Epithelial ovarian cancer (EOC) commonly acquires resistance to chemotherapy, and this is the major obstacle to the better prognosis. Elucidating the molecular targets altered by chemotherapy is critically required to understand and overcome drug resistance. As a drug combination including paclitaxel is a prevalent prescription for treatment of EOC, to uncover gene expression altered in paclitaxel-resistant EOC, we analyzed multidirectional microarray profiles in both EOC cell lines and patients with paclitaxel resistance. Cyclin-dependent kinase 1 (CDK1) was found to be a potential target of transcription factors to regulate paclitaxel resistance. As a result of the subsequent pharmacogenomics analysis, CDK1 inhibitor alsterpaullone was also indicated as a promising chemical that may be used in combinatorial therapies to reverse paclitaxel-induced chemoresistance. Although a CDK1 inhibitor has the potential to kill cancer cells, short-term treatment over 2 weeks at sublethal doses effectively induced cell death only upon additional treatment with paclitaxel. A prominent reduction in the tumor growth rate was observed upon paclitaxel subsequent to alsterpaullone treatment in EOC xenograft model. Thus, we suggest that inhibition of CDK1 with alsterpaullone may be a novel therapeutic method to reverse paclitaxel-induced resistance in ovarian cancer cells.
Periodontitis is initiated by causative bacteria in the gingival sulcus. However, as the lesion is often deep and out of circulation system and biofilm is frequently formed on the bacteria cluster, use of antibacterial agents has been limited and the invasive method such as curettage is thought as an only treatment. Here we designed non-invasive photodynamic therapy (PDT), with the ointment which leads a photosensitizer deliverable into gingival sulcus. We assessed whether 650 nm light-emitting-diode (LED) penetrates the 3-mm soft tissue and effectively activates a photosensitizer toluidine-blue-O (TBO) through the thickness to remove
Porphyromonas gingivalis
and
Fusobacterium nucleatum
species. The oral ointment formulation was optimized to efficiently deliver the photosensitizer into gingival sulcus and its efficacy of PDT was evaluated in
in vitro
and
in vivo
models. Four weeks of TBO-formulation mediated-PDT treatment significantly attenuated periodontitis-induced alveolar bone loss and inflammatory cytokines production in rats. These results confirm that a 650 nm LED indeed penetrates the gingiva and activates our TBO formulation which is sufficiently delivered to, and retained within, the gingival sulcus; thus, it effectively kills the bacteria that reside around the gingival sulcus. Collectively, TBO-mediated PDT using LED irradiation has potential as a safe adjunctive procedure for periodontitis treatment.
This study aimed to develop a novel oral drug delivery system for gastroretentive sustained drug release by using a capsular device. A capsular device that can control drug release rates from the inner immediate release (IR) tablet while floating in the gastric fluid was fabricated and printed by a fused deposition modeling 3D printer. A commercial IR tablet of baclofen was inserted into the capsular device. The structure of the capsular device was optimized by applying a design of experiment approach to achieve sustained release of a drug while maintaining sufficient buoyancy. The 2-level factorial design was used to identify the optimal sustained release with three control factors: size, number, and height of drug-releasing holes of the capsular device. The drug delivery system was buoyant for more than 24 h and the average time to reach 80% dissolution (T80) was 1.7–6.7 h by varying the control factors. The effects of the different control factors on the response factor, T80, were predicted by using the equation of best fit. Finally, drug delivery systems with predetermined release rates were prepared with a mean prediction error ≤ 15.3%. This approach holds great promise to develop various controlled release drug delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.