Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expansion of CAG triplet repeats in the huntingtin (HTT) gene (also called HD) and characterized by accumulation of aggregated fragments of polyglutamine-expanded HTT protein in affected neurons. Abnormal enrichment of HD inclusion bodies with ubiquitin, a diagnostic characteristic of HD and many other neurodegenerative disorders including Alzheimer's and Parkinson's diseases, has suggested that dysfunction in ubiquitin metabolism may contribute to the pathogenesis of these diseases. Because modification of proteins with polyubiquitin chains regulates many essential cellular processes including protein degradation, cell cycle, transcription, DNA repair and membrane trafficking, disrupted ubiquitin signalling is likely to have broad consequences for neuronal function and survival. Although ubiquitin-dependent protein degradation is impaired in cell-culture models of HD and of other neurodegenerative diseases, it has not been possible to evaluate the function of the ubiquitin-proteasome system (UPS) in HD patients or in animal models of the disease, and a functional role for UPS impairment in neurodegenerative disease pathogenesis remains controversial. Here we exploit a mass-spectrometry-based method to quantify polyubiquitin chains and demonstrate that the abundance of these chains is a faithful endogenous biomarker of UPS function. Lys 48-linked polyubiquitin chains accumulate early in pathogenesis in brains from the R6/2 transgenic mouse model of HD, from a knock-in model of HD and from human HD patients, establishing that UPS dysfunction is a consistent feature of HD pathology. Lys 63- and Lys 11-linked polyubiquitin chains, which are not typically associated with proteasomal targeting, also accumulate in the R6/2 mouse brain. Thus, HD is linked to global changes in the ubiquitin system to a much greater extent than previously recognized.
UbC is one of two stress‐inducible polyubiquitin genes in mammals and is thought to supplement the constitutive UbA genes in maintaining cellular ubiquitin (Ub) levels during episodes of cellular stress. We have generated mice harboring a targeted disruption of the UbC gene. UbC−/− embryos die between embryonic days 12.5 and 14.5 in utero, most likely owing to a severe defect in liver cell proliferation. Mouse embryonic fibroblasts from UbC−/− embryos exhibit reduced growth rates, premature senescence, increased apoptosis and delayed cell‐cycle progression, with slightly, but significantly, decreased steady‐state Ub levels. UbC−/− fibroblasts are hypersensitive to proteasome inhibitors and heat shock, and unable to adequately increase Ub levels in response to these cellular stresses. Most, but not all of the UbC−/− phenotypes can be rescued by providing additional Ub from a poly hemagglutinin‐tagged Ub minigene expressed from the Hprt locus. We propose that UbC is regulated by a process that senses Ub pool dynamics. These data establish that UbC constitutes an essential source of Ub during cell proliferation and stress that cannot be compensated by other Ub genes.
Inactivation of the essential autophagy gene Atg5 results in selective accumulation of aggregation-prone proteins independently of substrate ubiquitination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.