Veno-arterial extracorporeal membrane oxygenation is a form of mechanical circulatory support for patients with refractory decompensated heart failure. Blood is drawn from a large vein and pumped back to a large artery, usually a femoral artery through large bore catheters. When the heart recovers, the extracorporeal membrane oxygenation support can be terminated and the catheters are decannulated. The bleeding at the venous side can be controlled by prolonged compression; however, the arteriotomy wound needs to be repaired. Conventionally, the arteriotomy wounds require open vascular repair in the operating theater. The novel application of percutaneous vascular closure devices, which have been commonly used in vascular operations and percutaneous structural heart interventions, could be applied for closure of arteriotomy wounds at the bedside after extracorporeal membrane oxygenation support. The post-close ProGlide (Abbott Vascular) technique was shown to be safe and could potentially save time and manpower. The wounds are much smaller as compared with the conventional open repair and potentially, the chance of wound infection can be reduced. However, the success of percutaneous bedside closure requires careful prior planning and technique training. Backup plans with vascular surgeons’ standby are essential in case of failure of closure. Staffs in the extracorporeal membrane oxygenation centers need to be familiar with the preparation, the procedure as well as the device application technique for successful percutaneous closure. The long learning curve and the limited case load mean that such skills are best trained by simulation scenarios. This article described how this new technique and the team logistics can be trained by simulation.
Termination of peripheral veno-arterial extracorporeal membrane oxygenation support by managing the arteriotomy wound using a percutaneous closure device was reported successful and effective. However, careful assessment by clinical examination and also ultrasound Doppler assessment of the lower limb vasculature after closure is of paramount importance. Complications including pseudoaneurysm, arterial stenosis, and acute thrombosis are not uncommon. In this case report, commercial microbubbles were used as ultrasound contrast to enhance the image quality for better vascular ultrasound and Doppler assessment after veno-arterial extracorporeal membrane oxygenation percutaneous decannulation. A peudoaneurysm was revealed after microbubble injection, which would otherwise be missed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.