Acute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo. In caspase-11-deficient mice, BM transplantation with WT hematopoietic cells did not abrogate endotoxemia-induced acute lung injury, indicating a central role for nonhematopoietic caspase-11 in endotoxemia. Additionally, conditional deletion of caspase-11 in ECs reduced endotoxemia-induced lung edema, neutrophil accumulation, and death. These results establish the requisite role of endothelial pyroptosis in endotoxemic tissue injury and suggest that endothelial inflammatory caspases are an important therapeutic target for acute lung injury.Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury The Journal of Clinical Investigation R E S E A R C H A R T I C L E4 1 2 5 jci.org Volume 127 Number 11 November 2017the complex process of inflammation involves multiple programmed cell death pathways, depending on the type and magnitude of the inciting stimulus and cell type. From an evolutionary perspective, pyroptosis of cells harboring intracellular bacteria or in which LPS has breached the plasma membrane is an effective means of eliminating an intracellular bacterial niche and activating the host through release of inflammatory mediators such as IL-1β, while sparing uninfected neighboring cells (13,(28)(29)(30). Thus, pyroptosis induced by inflammatory caspases 1/4/5/11 is an innate immune response distinct from the canonical inflammasome activation pathway via cell-surface TLR4 (11,(31)(32)(33)(34). However, caspase-11 can also be immunopathologic in sepsis (35). Caspase-11-deficient mice were protected in endotoxemic shock (10,11), suggesting that in the setting of an overwhelming inflammatory response, the potentially protective pyroptotic mechanism activates an exaggerated pathologic response due to overwhelming cell lysis. The role of the inflammatory caspases 4/5/11 in mediating cytoplasmic LPS signaling and pyroptosis has until now been primarily studied in macrophages or dendritic cells (11,12,14,28,32,36). Their role in destroying the endothelial barrier through widespread endothelial death and pathogenesis of ALI remains unknown. Here, we tested the hypothesis that lung ECs are a primary target for pyroptosis via intracellular sensing of LPS by the inflammatory caspases 4/5/11 and that endothelial pyroptosis is required for the induction of ALI. Results LPS in ECs induces pyroptotic cell death via activation of inflammatory cas...
Store-operated Ca2+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca2+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent ISOC, activated in response to Ca2+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated ICRAC; the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(684EE685). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca2+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd3+, removal of extracellular Ca2+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca2+-containing, but not Ca2+-free, medium. Consistent with this, ICRAC is activated in cells pretreated with thapsigargin in Ca2+-free medium while ISOC is activated in cells pretreated in Ca2+-containing medium. Significantly, TRPC1 function is required for sustained KCa activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca2+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca2+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.
Agonist-induced Ca 2؉ entry via store-operated Ca 2؉ (SOC) channels is suggested to regulate a wide variety of cellular functions, including salivary gland fluid secretion. However, the molecular components of these channels and their physiological function(s) are largely unknown. Here we report that attenuation of SOC current underlies salivary gland dysfunction in mice lacking transient receptor potential 1 (TRPC1). Neurotransmitter-regulated salivary gland fluid secretion in TRPC1-deficient TRPC1(؊/؊) mice was severely decreased (by 70%). Further, agonist-and thapsigargin-stimulated SOC channel activity was significantly reduced in salivary gland acinar cells isolated from TRPC1(؊/؊) mice. Deletion of TRPC1 also eliminated sustained Ca 2؉ -dependent potassium channel activity, which depends on Ca 2؉ entry and is required for fluid secretion. Expression of key proteins involved in fluid secretion and Ca 2؉ signaling, including STIM1 and other TRPC channels, was not altered. Together, these data demonstrate that reduced SOC entry accounts for the severe loss of salivary gland fluid secretion in TRPC1(؊/؊) mice. Thus, TRPC1 is a critical component of the SOC channel in salivary gland acinar cells and is essential for neurotransmitter-regulation of fluid secretion. transient receptor potential ͉ canonical ͉ Ca 2ϩ entry ͉ acinar cells ͉ muscarinic receptor
Store-operated calcium entry (SOCE) is a ubiquitous mechanism that is mediated by distinct SOC channels, ranging from the highly selective calcium release-activated Ca 2؉ (CRAC) channel in rat basophilic leukemia and other hematopoietic cells to relatively Ca 2؉ -selective or non-selective SOC channels in other cells. Although the exact composition of these channels is not yet established, TRPC1 contributes to SOC channels and regulation of physiological function of a variety of cell types. Recently, Orai1 and STIM1 have been suggested to be sufficient for generating CRAC channels. Here we show that Orai1 and STIM1 are also required for TRPC1-SOC channels. Knockdown of TRPC1, Orai1, or STIM1 attenuated, whereas overexpression of TRPC1, but not Orai1 or STIM1, induced an increase in SOC entry and I SOC in human salivary gland cells. All three proteins were co-localized in the plasma membrane region of cells, and thapsigargin increased co-immunoprecipitation of TRPC1 with STIM1, and Orai1 in human salivary gland cells as well as dispersed mouse submandibular gland cells. In aggregate, the data presented here reveal that all three proteins are essential for generation of I SOC in these cells and that dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in activation of SOC channel in response to internal Ca 2؉ store depletion. Thus, these data suggest a common molecular basis for SOC and CRAC channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.