This study uses high-resolution radar and surface observations to investigate the finescale structural evolution of airflow and precipitation over complex terrain in the Pyeongchang area, South Korea. The Taebaek Mountain range (TMR) runs parallel to the northeastern coast of South Korea, with a perpendicular ridge known as the Pyeongchang branch (PCB). The objective of this study was to identify the mechanisms of wintertime precipitation over these topographic features during the passage of a low pressure system (LPS) through the southern Korean Peninsula. The analysis indicates that intense precipitation occurred over the southwestern and northeastern sides of the TMR during stage I but only over the northeastern side during stage II. The prevailing southwesterly winds were dominated by warm advection associated with the LPS over the PCB during stage I. These prevailing southwesterly winds locally enhanced precipitation on the southwestern end of the PCB; multiple influences of mountain waves, airflow convergence, and drifted particles are possible factors for causing precipitation on the northeastern side of the TMR. During stage II, the prevailing winds changed from easterlies to northeasterlies offshore from Gangneung. The easterly winds decelerated and were deflected locally along the mountainous coast, and this blocked zone interacted with the oncoming flow to trigger a precipitation band. Consequently, the northeasterly winds helped push the precipitation band toward the coast, causing heavy precipitation in Gangneung. The observational evidence presented shows that the interaction of temporally changing winds accompanying the movement of an LPS over topography is a critical factor for determining the distribution and intensity of precipitation.
Continued efforts are made in improving the performance of the low-cost forward osmosis (FO) membrane process which utilizes naturally available osmotic pressure of the draw solution (DS) as the driving force. Selection of a suitable DS and development of a better performing membrane remained the main research focus. In this study, the performance of a hollow fiber forward osmosis (HFFO) membrane was evaluated with respect to various operating conditions such as different cross-flow directions, membrane orientation, solution properties, and solution flow rates (Reynolds number). The study observed that operating parameters significantly affect the performance of the FO process. FO comparatively showed better performance at counter-current orientation. NaCl, KCl, and NH 4 Cl were evaluated as DS carrying common anion. Properties of the anionic part of the DS were found important for flux outcome, whereas reverse solute flux (RSF) was largely influenced by the properties of DS cationic part. FO was operated at different DS and feed solution (FS) flow rates and FO outcome was assessed for varying DS and FS Reynolds number ratio. FO showed better flux outcome as Re ratio for DS and FS decreases and vice versa. Results indicated that by adjusting FO processes conditions, HFFO membrane could achieve significantly lower specific RSF and higher water flux outcome. It was observed that using 2 M NaCl as DS and deionized water as FS, HFFO successfully delivered flux of 62.9 LMH which is significantly high compared to many FO membranes reported in the literature under the active layer-DS membrane orientation mode.
Abstract. Snowfall in the northeastern part of South Korea is the result of complex snowfall mechanisms due to a highly contrasting terrain combined with nearby warm waters and three synoptic pressure patterns. All these factors together create unique combinations, whose disentangling can provide new insights into the microphysics of snow on the planet. This study focuses on the impact of wind flow and topography on the microphysics drawing of 20 snowfall events during the ICE-POP 2018 (International Collaborative Experiment for PyeongChang 2018 Olympic and Paralympic winter games) field campaign in the Gangwon region. The vertical structure of precipitation and size distribution characteristics are investigated with collocated MRR (micro rain radar) and PARSIVEL (particle size velocity) disdrometers installed across the mountain range. The results indicate that wind shear and embedded turbulence were the cause of the riming process dominating the mountainous region. As the strength of these processes weakens from the mountainous region to the coastal region, riming became less significant and gave way to aggregation. This study specifically analyzes the microphysical characteristics under three major synoptic patterns: air–sea interaction, cold low, and warm low. Air–sea interaction pattern is characterized by more frequent snowfall and vertically deeper precipitation systems on the windward side, resulting in significant aggregation in the coastal region, with riming featuring as a primary growth mechanism in both mountainous and coastal regions. The cold-low pattern is characterized by a higher snowfall rate and vertically deep systems in the mountainous region, with the precipitation system becoming shallower in the coastal region and strong turbulence being found in the layer below 2 km in the mountainous upstream region (linked with dominant aggregation). The warm-low pattern features the deepest system: precipitation here is enhanced by the seeder–feeder mechanism with two different precipitation systems divided by the transition zone (easterly below and westerly above). Overall, it is found that strong shear and turbulence in the transition zone is a likely reason for the dominant riming process in the mountainous region, with aggregation being important in both mountainous and coastal regions.
The performance of recently developed polyamide thin film composite hollow fibre forward osmosis (HFFO) membrane module was assessed for the desalination of brackish groundwater (BGW) for fertigation. Four different fertilisers were used as draw solution (DS) with real BGW from the Murray-Darling Basin in Australia. Membrane charge and its electrostatic interactions with ions played a significant role in the performance of the HFFO module using fertiliser as DS. Negatively charged polyamide layer promotes sorption of multivalent cations such as Ca 2+ enhancing ion flux and membrane scaling. Inorganic scaling occurred both on active layer and inside the support layer depending on the types of fertiliser DS used resulting in severe flux decline and this study therefore underscores the importance of selecting suitable fertilisers for the fertiliser drawn forward osmosis (FDFO) process. Water flux under active layer DS membrane orientation was about twice as high as the other orientation indicating the need to further optimise the membrane support structure formation. Water flux slightly improved at higher crossflow rates due to enhanced mass transfer on the fibre lumen side. At 45% packing density, HFFO could have three times more membrane area and four times more volumetric flux output for an equivalent 8040 cellulose triacetate flat-sheet FO membrane module.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.