It is currently unknown whether the molecular steps of large dense-core vesicle (LDCV) docking and priming are identical to the corresponding reactions in synaptic vesicle (SV) exocytosis. Munc13s are essential for SV docking and priming, and we systematically analyzed their role in LDCV exocytosis using chromaffin cells lacking individual isoforms. We show that particularly Munc13-2 plays a fundamental role in LDCV exocytosis, but in contrast to synapses lacking Munc13s, the corresponding chromaffin cells do not exhibit a vesicle docking defect. We further demonstrate that ubMunc13-2 and Munc13-1 confer Ca2+-dependent LDCV priming with similar affinities, but distinct kinetics. Using a mathematical model, we identify an early LDCV priming step that is strongly dependent upon Munc13s. Our data demonstrate that the molecular steps of SV and LDCV priming are very similar while SV and LDCV docking mechanisms are distinct.DOI:
http://dx.doi.org/10.7554/eLife.10635.001
MicroRNAs (miRNAs) play an important role in a variety of physiological as well as pathophysiological processes, including carcinogenesis. The aim of this study is to identify a distinct miRNA expression signature for cervical intraepithelial neoplasia (CIN) and to unveil individual miRNAs that may be involved in the development of cervical carcinoma. Expression profiling using quantitative real-time RT-PCR of 202 miRNAs was performed on micro-dissected high-grade CIN (CIN 2/3) tissues and compared to normal cervical epithelium. Unsupervised hierarchical clustering of the miRNA expression pattern displayed a distinct separation between the CIN and normal cervical epithelium samples. Supervised analysis identified 12 highly differentially regulated miRNAs, including miR-518a, miR-34b, miR-34c, miR-20b, miR-338, miR-9, miR-512-5p, miR-424, miR-345, miR-10a, miR-193b and miR-203, which distinguished the high-grade CIN specimens from normal cervical epithelium. This miRNA signature was further validated by an independent set of high-grade CIN cases. The same characteristic signature can also be used to distinguish cervical squamous cell carcinoma from normal controls. Target prediction analysis revealed that these dysregulated miRNAs mainly control apoptosis signaling pathways and cell cycle regulation. These findings contribute to understanding the role of microRNAs in the pathogenesis and progression of cervical neoplasm at the molecular level.
Neurotransmitter release is triggered by membrane depolarization, Ca(2+) influx and Ca(2+) sensing by the release machinery, causing synaptic vesicle (SV) fusion with the plasma membrane. Interlinked is a complex membrane cycle in which vesicles are tethered to the release site, primed, fused and recycled. As many of these processes are Ca(2+) dependent and simultaneously occurring, it is difficult to dissect them experimentally. This problem can be partially circumvented by controlling synaptic Ca(2+) concentrations via UV photolysis of caged Ca(2+). We developed a culture protocol for Ca(2+) uncaging in small synapses on the basis of the generation of small glia cell islands with single neurons on top, which are sufficiently small to be covered with a UV-light flash. Neurons are loaded with the photolabile Ca(2+)-chelator nitrophenyl-EGTA and Ca(2+) indicators, and a UV flash is used to trigger Ca(2+)-uncaging and SV fusion. The protocol takes three weeks to complete and provides unprecedented insights into the mechanisms of transmitter release.
The tethering factor Munc13-4 is recruited to Weibel–Palade body (WPB) fusion sites after secretagogue stimulation to promote WPB exocytosis. Annexin A2-S100A10 is a novel Munc13-4 interaction partner assisting Munc13-4 tethering at the plasma membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.