Background and purpose: Doxorubicin evokes oxidative stress and precipitates cell apoptosis in testicular tissues. The aim of this study was to investigate whether the Ginkgo biloba extract 761 (EGb), a widely used herbal medicine with potent anti-oxidant and anti-apoptotic properties, could protect testes from such doxorubicin injury. Experimental approach: Sprague-Dawley male rats (8 weeks old) were given vehicle, doxorubicin alone (3 mg kg -1 every 2 days for three doses), EGb alone (5 mg kg -1 every 2 days for three doses), or EGb followed by doxorubicin (each dose administered 1 day after EGb). At 7 days after the first drug treatment oxidative and apoptotic testicular toxicity was evaluated by biochemical, histological and flow cytometric analyses. Key results: Compared with controls, testes from doxorubicin-treated rats displayed impaired spermatogenesis, depleted haploid germ cell subpopulations, increased lipid peroxidation products (malondialdehyde), depressed antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase and glutathione), reduced antioxidant enzyme expression (superoxide dismutase) and elevated apoptotic indexes (pro-apoptotic modulation of Bcl-2 family proteins, intensification of p53 and Apaf-1, release of mitochondrial cytochrome c, activation of caspase-3 and increase of terminal deoxynucleotidyl transferase nick-end labelling/sub-haploid cells), while EGb pretreatment effectively alleviated all of these doxorubicin-induced abnormalities in testes. Conclusions and implications:These results demonstrate that EGb protected against the oxidative and apoptotic actions of doxorubicin on testes. EGb may be a promising adjuvant therapy medicine, potentially ameliorating testicular toxicity of this anti-neoplastic agent in clinical practice.
Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed for 4 years in environment-controlled chambers that maintained: (1) ambient conditions (CON); (2) elevated atmospheric CO2 concentration (ambient + 350 micro mol mol-1; EC); (3) elevated temperature (ambient +2-6 degrees C; ET); or (4) elevated CO2 and elevated temperature (ECT). The dark respiration rates of 1-year-old shoots, from which needles had been partly removed, were measured over the growing season in the fourth year. In all treatments, the temperature coefficient of respiration, Q10, changed with season, being smaller during the growing season than at other times. Respiration rate varied diurnally and seasonally with temperature, being highest around mid-summer and declining gradually thereafter. When measurements were made at the temperature of the chamber, respiration rates were reduced by the EC treatment relative to CON, but were increased by ET and ECT treatments. However, respiration rates at a reference temperature of 15 degrees C were reduced by ET and ECT treatments, reflecting a decreased capacity for respiration at warmer temperatures (negative acclimation). The interaction between season and treatment was not significant. Growth respiration did not differ between treatments, but maintenance respiration did, and the differences in mean daily respiration rate between the treatments were attributable to the maintenance component. We conclude that maintenance respiration should be considered when modelling respiratory responses to elevated CO2 and elevated temperature, and that increased atmospheric temperature is more important than increasing CO2 when assessing the carbon budget of pine forests under conditions of climate change.
In this paper we review a theoretical formulation of the adjoint method to be used in four-dimensional (4D) chemistry data assimilation. The goal of the chemistry data assimilation is to combine an atmospheric-chemistry model and actual observations to produce the best estimate of the chemistry of the atmosphere. The observational dataset collected during the past decades is an unprecedented expansion of our knowledge of the atmosphere. The exploitation of these data is the best way to advance our understanding of atmospheric chemistry, and to develop chemistry models for chemistry-climate prediction. The assimilation focuses on estimating the state of the chemistry in a chemically and dynamically consistent manner (if the model allows online interactions between chemistry and dynamics). In so doing, we can: produce simultaneous and chemically consistent estimates of all species (including model parameters), observed and unobserved; fill in data voids; test the photochemical theories used in the chemistry models. In this paper, the Hilbert space is first formulated from the geometric structure of the Banach space, followed by the development of the adjoint operator in Hilbert space. The principle of the adjoint method is described, followed by two examples which show the relationship of the gradient of the cost function with respect to the output vector and the gradient of the cost function with respect to the input vector. Applications to chemistry data assimilation are presented for both continuous and discrete cases. The 4D data variational adjoint method is then tested in the assimilation of stratospheric chemistry using a simple catalytic ozone-destruction mechanism, and the test results indicate that the performance of the assimilation method is good.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.