While planewave DFT methods offer capabilities to calculate the relative stabilities and many physical properties exhibited by solid state structures, their detailed numerical output does not easily map onto the often empirical concepts and parameters used by synthetic chemists or materials scientists. The DFT-chemical pressure (CP) method is an approach to bridging this divide by explaining or anticipating a variety of structural phenomena in terms of atomic size and packing effects, but its reliance on adjustable parameters has limited the method’s predictive potential. In this article, we present the self-consistent (sc)-DFT-CP analysis, in which the criterion of self-consistency is used to automatically solve these parameterization issues. We begin by illustrating the need for this improved method with the results for a series of CaCu5-type/MgCu2-type intergrowth structures, where unphysical trends emerge that have no clear structural origin. To address these challenges, we derive iterative treatments for assigning ionicity and for the partitioning of the E Ewald + E α terms in the DFT total energy into homogeneous and localized terms. In this method, self-consistency is achieved between the input and output charges from a variation of the Hirshfeld charge scheme, while the partitioning of the E Ewald + E α terms is adjusted to create equilibrium between the net atomic pressures calculated within atomic regions and from the interatomic interactions. The behavior of the sc-DFT-CP method is then tested using electronic structure data for several hundred compounds from the Intermetallic Reactivity Database. Finally, we return to the CaCu5-type/MgCu2-type intergrowth series with the sc-DFT-CP approach, showing that trends in the series are now easily traced to changes in the thicknesses of the CaCu5-type domains and lattice mismatch at the interface. Through this analysis and the complete update to the CP schemes in the IRD, the sc-DFT-CP method is demonstrated as a theoretical tool for the investigation of atomic packing issues across intermetallic chemistry.
N-heterocycles are prevalent in pharmaceuticals and natural products, but traditional methods often do not introduce significant stereochemical complexity into the ring. We previously reported a Rh-catalyzed ring expansion of aziridines and N-sulfonyl-1,2,3-triazoles to furnish dehydropiperazines with excellent diastereocontrol. However, later studies employing ketone-containing carbene precursors showed that [3,9]-bicyclic aziridine formation competes with production of the desired heterocyclic scaffolds. In light of these surprising results, our initial findings were re-examined both experimentally and computationally to reveal how noncovalent interactions and restricted bond rotation in the aziridinium ylide intermediate promote this unexpected reaction pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.