Copper is a crucial micronutrient needed by animals and humans for proper organ function and metabolic processes such as hemoglobin synthesis, as a neurotransmitter, for iron oxidation, cellular respiration, and antioxidant defense peptide amidation, and in the formation of pigments and connective tissue. Multiple factors, either hereditary or acquired, contribute to the increase in copper deficiency seen clinically over the past decades. The uptake of dietary copper into intestinal cells is via the Ctr1 transporter, located at the apical membrane aspect of intestinal cells and in most tissues. Copper is excreted from enterocytes into the blood via the Cu-ATPase, ATP7A, by trafficking the transporter towards the basolateral membrane. Zinc is another important micronutrient in animals and humans. Although zinc absorption may occur by direct interaction with the Ctr1 transporter, its absorption is slightly different. Copper deficiency affects physiologic systems such as bone marrow hematopoiesis, optic nerve function, and the nervous system in general. Detailed pathophysiology and its related diseases are explained in this manuscript. Diagnosis is made by measuring serum copper, serum ceruloplasmin, and 24-h urine copper levels. Copper deficiency anemia is treated with oral or intravenous copper replacement in the form of copper gluconate, copper sulfate, or copper chloride. Hematological manifestations are fully reversible with copper supplementation over a 4- to 12-week period. However, neurological manifestations are only partially reversible with copper supplementation.
Rearranged during transfection (RET) is involved in the physiological development of some organ systems. Activating RET alterations via either gene fusions or point mutations are potent oncogenic drivers in non-small cell lung cancer, thyroid cancer, and in multiple diverse cancers. RET-altered cancers were initially treated with multikinase inhibitors (MKIs). The efficacy of MKIs was modest at the expense of notable toxicities from their off-target activity. Recently, highly potent and RET-specific inhibitors selpercatinib and pralsetinib were successfully translated to the clinic and FDA approved. We summarize the current state-of-the-art therapeutics with preclinical and clinical insights of these novel RET inhibitors, acquired resistance mechanisms, and future outlooks. HighlightsRearranged during transfection (RET) is an oncogenic driver activated by either RET fusions or mutations. RET fusions occur predominantly in 2% of lung cancers and 10-20% of thyroid cancers and in low frequency in an increasing number of diverse cancers.Recently, highly potent and RET-specific inhibitors selpercatinib and pralsetinib have been successfully translated to the clinic and are FDA approved.Data on acquired resistance to RETspecific inhibitors are rapidly emerging but not fully understood. However recent studies have suggested on-target mutations at non-gatekeeper sites or emergence of off-target alterations such as MET amplification or NTRK fusion as mechanisms of acquired resistance.
Sinonasal malignancies make up <5% of all head and neck neoplasms, with an incidence of 0.5–1.0 per 100,000. The outcome of these rare malignancies has been poor, whereas significant progress has been made in the management of other cancers. The objective of the current review was to describe the incidence, causes, presentation, diagnosis, treatment, and recent developments of malignancies of the sinonasal tract. The diagnoses covered in this review included sinonasal undifferentiated carcinoma, sinonasal adenocarcinoma, sinonasal squamous cell carcinoma, and esthesioneuroblastoma, which are exclusive to the sinonasal tract. In addition, the authors covered malignances that are likely to be encountered in the sinonasal tract—primary mucosal melanoma, NUT (nuclear protein of the testis) carcinoma, and extranodal natural killer cell/T‐cell lymphoma. For the purpose of keeping this review as concise and focused as possible, sarcomas and malignancies that can be classified as salivary gland neoplasms were excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.