Gold compounds are used in the treatment of rheumatoid arthritis. NF-κB is a transcription factor implicated in the expression of many inflammatory genes. NF-κB is activated by signal-induced phosphorylation and subsequent degradation of inhibitory IκB (inhibitory protein that dissociates from NF-κB) proteins, and a multisubunit IκB kinase (IKK) has been identified previously. We tested the effect of various gold compounds on the activation of NF-κB and IKK in LPS-stimulated RAW 264.7 mouse macrophages. A lipophilic gold compound, auranofin, suppressed the LPS-induced increase of nuclear κB-binding activity, degradation of IκB proteins, and IKK activation. Auranofin also blocked IKK activation induced by TNF and PMA/ionomycin, suggesting that the target of auranofin action is common among these diverse signal pathways. In vitro IKK activity was suppressed by addition of hydrophilic gold compounds, such as aurothiomalate, aurothioglucose, and AuCl3. Other thiol-reactive metal ions such as zinc and copper also inhibited IKK activity in vitro, and induction of IKK in LPS-stimulated macrophages. In vitro IKK activity required the presence of reducing agent and was blocked by addition of thiol group-reactive agents. Two catalytic subunits of IKK complex, IKKα and IKKβ, were both inhibited by these thiol-modifying agents, suggesting the presence of a cysteine sulfhydryl group in these subunits, which is critical for enzyme activity. The antiinflammatory activity of gold compounds in the treatment of rheumatoid arthritis may depend on modification of this thiol group by gold.
Antirheumatic gold compounds have been shown to inhibit NF-κB activation by blocking IκB kinase (IKK) activity. To examine the possible inhibitory mechanism of gold compounds, we expressed wild type and mutant forms of IKKα and β subunits in COS-7 cells and determined the effect of gold on the activity of these enzymes both in vivo and in vitro. Substitution of Cys-179 of IKKβ with alanine (C179A) rendered the enzyme to become resistant to inhibition by a gold compound auranofin, however, similar protective effect was not observed with an equivalent level of IKKα (C178A) mutant expressed in the cells. Auranofin inhibited constitutively active IKKα and β and variants; IKKα (S176E, S180E) or IKKβ (S177E, S181E), suggesting that gold directly cause inhibition of activated enzyme. The different inhibitory effect of auranofin on IKKα (C178A) and IKKβ (C179A) mutants indicates that gold could inhibit the two subunits of IKK in a different mode, and the inhibition of NF-κB and IKK activation induced by inflammatory signals in gold-treated cells appears through its interaction with Cys-179 of IKKβ.
Corneal scarring, whether caused by trauma, laser refractive surgery, or infection, remains a significant problem for humans. Certain ligands for peroxisome proliferator-activated receptor gamma (PPARγ) have shown promise as antiscarring agents in a variety of body tissues. In the cornea, their relative effectiveness and mechanisms of action are still poorly understood. Here, we contrasted the antifibrotic effects of three different PPARγ ligands (15-deoxy-Δ12,14-prostaglandin J2, troglitazone, and rosiglitazone) in cat corneal fibroblasts. Western blot analyses revealed that all three compounds reduced transforming growth factor (TGF)-β1-driven myofibroblast differentiation and up-regulation of α-smooth muscle actin, type I collagen, and fibronectin expression. Because these effects were independent of PPARγ, we ascertained whether they occurred by altering phosphorylation of Smads 2/3, p38 mitogen-activated protein kinase, stress-activated protein kinase, protein kinase B, extracellular signal-regulated kinase, and/or myosin light chain 2. Only p38 mitogen-activated protein kinase phosphorylation was significantly inhibited by all three PPARγ ligands. Finally, we tested the antifibrotic potential of troglitazone in a cat model of photorefractive keratectomy-induced corneal injury. Topical application of troglitazone significantly reduced α-smooth muscle actin expression and haze in the stromal ablation zone. Thus, the PPARγ ligands tested here showed great promise as antifibrotics, both in vitro and in vivo. Our results also provided new evidence for the signaling pathways that may underlie these antifibrotic actions in corneal fibroblasts.
Reactive oxygen species (ROS) has been implicated as an inducer of NF-kappaB activity in numbers of cell types where exposure of cells to ROS such as H(2)O(2) leads to NF-kappaB activation. In contrast, exposure to oxidative stress in certain cell types induced reduction of tumor necrosis factor (TNF)- induced NF-kappaB activation. And various thiol-modifying agents including gold compounds and cyclopentenone prostaglandins inhibit NF-kappaB activation by blocking IkappaB kinase (IKK). To understand such conflicting effect of oxidative stress on NF- kappakB activation, HeLa cells were incubated with H(2)O(2) or diamide and TNF-induced expression of NF-kappaB reporter gene was measured. NF-kappaB activation was significantly blocked by these oxidizing agents, and the inhibition was accompanied with reduced nuclear NF-kappaB and inappropriate cytosolic IkappaB degradation. H(2)O(2) and diamide also inhibited IKK activation in HeLa and RAW 264.7 cells stimulated with TNF and lipopolysaccharide, respectively, and directly blocked IKK activity in vitro. In cells treated with H(2)O(2) alone, nuclear NF-kappaB was induced after 2 h without detectable degradation of cytosolic IkappaBalphaa or activation of IKK. Our results suggest that ROS has a dual effect on NF-kappaB activation in the same HeLa cells: it inhibits acute IKK-mediated NF-kappakB activation induced by inflammatory signals, while longer-term exposure to ROS induces NF-kappaB activity through an IKK-independent pathway.
Abnormal nerve regeneration often follows corneal injury, predisposing patients to pain, dry eye and vision loss. Yet, we lack a mechanistic understanding of this process. A key event in corneal wounds is the differentiation of keratocytes into fibroblasts and scar-forming myofibroblasts. Here, we show for the first time that regenerating nerves avoid corneal regions populated by myofibroblasts in vivo. Recreating this interaction in vitro, we find neurite outgrowth delayed when myofibroblasts but not fibroblasts, are co-cultured with sensory neurons. After neurites elongated sufficiently, contact inhibition was observed with myofibroblasts, but not fibroblasts. Reduced neurite outgrowth in vitro appeared mediated by transforming growth factor beta 1 (TGF-β1) secreted by myofibroblasts, which increased phosphorylation of collapsin response mediating protein 2 (CRMP2) in neurons. The significance of this mechanism was further tested by applying Mitomycin C after photorefractive keratectomy to decrease myofibroblast differentiation. This generated earlier repopulation of the ablation zone by intra-epithelial and sub-basal nerves. Our findings suggest that attaining proper, rapid corneal nerve regeneration after injury may require blocking myofibroblast differentiation and/or TGF-β during wound healing. They also highlight hitherto undefined myofibroblast-neuron signaling processes capable of restricting neurite outgrowth in the cornea and other tissues where scars and nerves co-exist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.