Treatment with isoprenaline led to a change in the cell morphology of rat C6 glioma cells. This morphological change was reverted by the addition of sphingosine 1-phosphate (S1P). Using this morphological change as a response marker we determined that DS-SG-44 ((2S,3R)-2-amino-3-hydroxy-4-(4-octylphenyl)butyl phosphoric acid) was an agonist of S1P receptors. The DS-SG-44-induced morphological reversion was not observed with such structurally related molecules as DS-SG-45 ((2S,3R)-2-amino-3-hydroxy-4-(3-octylphenyl)butyl phosphoric acid) and DS-SG-12 ((2S,3R)-2-amino-4-(4-octylphenyl)butane-1,3-diol). The S1P- and DS-SG-44-induced shape changes were neither reproduced with the S1P1/S1P3 receptor agonist VPC24191 nor inhibited by the S1P1/S1P3 receptor antagonist, VPC23019. Transfection with small interfering RNA (siRNA) for the S1P2 receptor greatly inhibited the DS-SG-44-induced shape change, and in part an S1P-induced response. In the presence of VPC23019, siRNA transfection for the S1P2 receptor almost completely blocked the S1P- and DS-SG-44-induced shape changes. Our results suggested that DS-SG-44, a newly-synthesized S1P analogue, acted as an S1P receptor agonist and that the S1P-induced shape change in rat C6 glioma cells was mediated mainly through the S1P2 receptor, and cooperatively through the S1P1/S1P3 receptors.
Aim: To study the effects of dibenzocyclooctadiene lignans isolated from Schisandra chinensis, such as wuweizisu C, gomisin N, gomisin A, and schisandrin, on the membrane potential in C6 glioma cells. Methods: The membrane potential was estimated by measuring the fluorescence change in DiBAC-loaded glioma cells. Results: Wuweizisu C decreased the membrane potential in a concentration-dependent manner. Gomisin N and gomisin A, however, showed differential modulation and no change was induced by schisandrin or dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylene dioxybiphenyl-2,2'-dicarboxylate, a synthetic drug derived from dibenzocyclooctadiene lignans. We found no involvement of Gi/o proteins, phospholipase C, and extracellular Na + on the wuweizisu C-induced decrease of the membrane potential. Wuweizisu C by itself did not change the intracellular Ca 2+ [Ca 2+ ]i concentration, but decreased the ATP-induced Ca 2+ increase in C6 glioma cells. The 4 lignans at all concentrations used in this study did not induce any effect on cell viability. Furthermore, we found a similar decrease of the membrane potential by wuweizisu C in PC12 neuronal cells. Conclusion: Our results suggest that the decrease in the membrane potential and the modulation of [Ca 2+ ]i concentration by wuweizisu C could be important action mechanisms of wuweizisu C.
Dodecylbenzene sulfonate (DBS) is a component of linear alkylbenzene sulfonate (LAS), an anionic surfactant, mainly used in household detergents. Due to the large quantity of DBS in use, there is concern over adverse environmental effects. This work examined the toxicokinetics and toxicity of the 2-phenyl isomer of dodecylbenzene sulfonate in 4-d, 10-d, and partial life-cycle tests on the midge, Chironomus riparius, exposed to aqueous solutions. Toxicokinetics were determined in 10-d uptake and 5-d elimination tests. The toxicokinetics were based on parent compound concentration in water and yielded an uptake coefficient (ku) of 17.5 (14.87-20.20) ml/g/h, an elimination rate constant (ke) of 0.073 (0.062-0.085) per h, a bioconcentration factor (BCF) of 56 to 240, and a half-life (t 1/2) of 9.5 (8.0-11.0) h. Biotransformation measurements did not reveal evidence for DBS metabolism. Thus, body residues, determined in the toxicity study, represent parent compound. In toxicity tests, 4- and 10-d LR50s (the body residue required to cause 50% mortality) in live midges were 0.72 (0.65-0.79) and 0.18 (0.08-0.42) mmol/kg, respectively. Thirty-day LR50s were 0.18 (0.09-1.64) and 0.21 (0.15-0.39) mmol/kg in duplicate studies. Of the sublethal endpoints, only developmental time increase was significant, with the lowest-observed-effect residues of 0.085 (0.067-0.105) and 0.100 (0.087-0.114) mmol/kg for male and female midges, respectively. Deformities in surviving larvae were also observed as chronic responses for body residues exceeding the 30-d LR50. The body residues required for mortality suggest that DBS acts like a polar narcotic in the midge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.