Mepivacaine is an aminoamide-linked local anesthetic with an intermediate duration that intrinsically produces vasoconstriction both in vivo and in vitro. The aims of this in-vitro study were to examine the direct effect of mepivacaine in isolated rat aortic rings and to determine the associated cellular mechanism with a particular focus on endothelium-derived vasodilators, which modulate vascular tone. In the aortic rings with or without endothelium, cumulative mepivacaine concentration-response curves were generated in the presence or absence of the following antagonists: N(ω)-nitro-L-arginine methyl ester [L-NAME], indomethacin, fluconazole, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one [ODQ], verapamil, and calcium-free Krebs solution. Mepivacaine produced vasoconstriction at low concentrations (1 × 10(-3) and 3 × 10(-3) mol/L) followed by vasodilation at a high concentration (1 × 10(-2) mol/L). The mepivacaine-induced contraction was higher in endothelium-denuded aortae than in endothelium-intact aortae. Pretreatment with L-NAME, ODQ, and methylene blue enhanced mepivacaine-induced contraction in the endothelium-intact rings, whereas fluconazole had no effect. Indomethacin slightly attenuated mepivacaine-induced contraction, whereas verapamil and calcium-free Krebs solution more strongly attenuated this contraction. The vasoconstriction induced by mepivacaine is attenuated mainly by the endothelial nitric oxide - cyclic guanosine monophosphate pathway. In addition, mepivacaine-induced contraction involves cyclooxygenase pathway activation and extracellular calcium influx via voltage-operated calcium channels.
Intravenous lipid emulsions (LEs) are effective in the treatment of toxicity associated with various drugs such as local anesthetics and other lipid soluble agents. The goals of this study were to examine the effect of LE on left ventricular hemodynamic variables and systemic blood pressure in an in vivo rat model, and to determine the associated cellular mechanism with a particular focus on nitric oxide. Two LEs (Intralipid® 20% and Lipofundin® MCT/LCT 20%) or normal saline were administered intravenously in an in vivo rat model following induction of anesthesia by intramuscular injection of tiletamine/zolazepam and xylazine. Left ventricular systolic pressure (LVSP), blood pressure, heart rate, maximum rate of intraventricular pressure increase, and maximum rate of intraventricular pressure decrease were measured before and after intravenous administration of various doses of LEs or normal saline to an in vivo rat with or without pretreatment with the non-specific nitric oxide synthase inhibitor Nω-nitro-L-arginine-methyl ester (L-NAME). Administration of Intralipid® (3 and 10 ml/kg) increased LVSP and decreased heart rate. Pretreatment with L-NAME (10 mg/kg) increased LSVP and decreased heart rate, whereas subsequent treatment with Intralipid® did not significantly alter LVSP. Intralipid® (10 ml/kg) increased mean blood pressure and decreased heart rate. The increase in LVSP induced by Lipofundin® MCT/LCT was greater than that induced by Intralipid®. Intralipid® (1%) did not significantly alter nitric oxide donor sodium nitroprusside-induced relaxation in endothelium-denuded rat aorta. Taken together, systemic blockage of nitric oxide synthase by L-NAME increases LVSP, which is not augmented further by intralipid®.
Amlodipine-induced toxicity has detrimental effects on cardiac cells. The aim of this study was to examine the effect of lipid emulsion on decreased H9c2 rat cardiomyoblast viability induced by amlodipine toxicity. The effects of amlodipine, lipid emulsion, LY 294002, and glibenclamide, either alone or in combination, on cell viability and count, apoptosis, and expression of cleaved caspase-3 and -8, and Bax were examined. LY 294002 and glibenclamide partially reversed lipid emulsion-mediated attenuation of decreased cell viability and count induced by amlodipine. Amlodipine increased caspase-3 and -8 expression, but it did not alter Bax expression. LY 294002 and glibenclamide reversed lipid emulsion-mediated inhibition of cleaved caspase-3 and -8 expression induced by amlodipine. Lipid emulsion inhibited early and late apoptosis induced by amlodipine. LY 294002 and glibenclamide inhibited lipid emulsion-mediated inhibition of late apoptosis induced by amlodipine, but they did not significantly alter lipid emulsion-mediated inhibition of early apoptosis induced by amlodipine. Lipid emulsion decreased amlodipine-induced TUNEL-positive cells. These results suggest that lipid emulsion inhibits late apoptosis induced by amlodipine at toxic dose via the activation of phosphoinositide-3 kinase and ATP-sensitive potassium channels in the extrinsic apoptotic pathway.
In this in vitro study we examined the effects of diazepam on a phenylephrine-induced contraction in rat aorta and determined the associated cellular mechanism focusing on the endothelium-derived vasodilators. The concentration-response curves for phenylephrine and potassium chloride were generated in the presence or absence of diazepam. Phenylephrine concentration-response curves were generated from the endothelium-intact rings pretreated independently with N(W)-nitro-L-arginine methyl ester, PK 11195, tetraethylammonium, and indomethacin in the presence or absence of diazepam. Diazepam (7 x 10(-7) M) attenuated the phenylephrine-induced contraction in the endothelium-intact rings, whereas a large dose (5 x 10(-6) M) of diazepam attenuated the phenylephrine-induced contraction in the aortic rings with or without the endothelium. A pretreatment with the N(W)-nitro-L-arginine methyl ester completely abolished the diazepam (7 x 10(-7) M)-induced attenuation of the phenylephrine concentration-response curve, as well as the diazepam (5 x 10(-6) M)-induced attenuation of the maximal contractile response to phenylephrine. The N(W)-nitro-L-arginine methyl ester (10(-4) M)-induced contraction was enhanced in the rings pretreated with diazepam (5 x 10(-6) M). These results indicate that a supraclinical concentration of diazepam attenuates phenylephrine-induced contraction by increasing endothelial nitric oxide activity and directly affecting vascular smooth muscle.
BackgroundIt is well known that propofol protects myocardium against myocardial ischemia/reperfusion injury in the rat heart model. The aim of this study was to investigate whether propofol provides a protective effect against a regional myocardial ischemia/reperfusion injury in an in vivo rat heart model after 48 h of reperfusion.MethodsRats were subjected to 25 min of left coronary artery occlusion followed by 48 h of reperfusion. The sham group received profopol without ischemic injury. The control group received normal saline with ischemia/reperfusion injury. The propofol group received profopol with ischemia/reperfusion injury. The intralipid group received intralipid with ischemia/reperfusion injury. A microcatheter was advanced into the left ventricle and the hemodynamic function was evaluated. The infarct size was determined by triphenyltetrazolium staining. The serum level of cardiac troponin-I (cTn-I) was determined by ELISA (enzyme-linked immunosorbent assay).ResultsPropofol demonstrated protective effects on hemodynamic function and infarct size reduction. In the propofol group, the +dP/dtmax (P = 0.002) was significantly improved compared to the control group. The infarct size was 49.8% of the area at risk in the control group, and was reduced markedly by administration of propofol to 32.6% in the propofol group (P = 0.014). The ischemia/reperfusion-induced serum level of cTn-I was reduced by propofol infusion during the peri-ischemic period (P = 0.0001).ConclusionsPropofol, which infused at clinically relevant concentration during the peri-ischemic period, has delayed myocardial protective effect after regional myocardial ischemia/reperfusion injury in an in vivo rat heart model after 48 h of reperfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.