During the maintenance of visuospatial information, neural activity in the frontal eye field (FEF) persists and is thought to be a key neural mechanism for visual working memory. Here, we used functional magnetic resonance imaging (fMRI) to test if human FEF activity persists when maintaining auditory space, and if it is selective for retinal versus extra-retinal space. Subjects performed an audiospatial working memory task using sounds recorded from microphones placed within each subject’s ear canals, which preserved the interaural time and level differences critical for sound localization. Putative FEF activity persisted when maintaining auditory-cued space even for locations behind the head to which it is impossible to make saccades. Therefore, human FEF activity not only represents retinal space but also represents extra-retinal space.
Although externally as well as internally-guided eye movements allow us to flexibly explore the visual environment, their differential neural mechanisms remain elusive. A better understanding of these neural mechanisms will help us to understand the control of action and to elucidate the nature of cognitive deficits in certain psychiatric populations (e.g. schizophrenia) that show increased latencies in volitional but not visually-guided saccades. Both the superior precentral sulcus (sPCS) and the intraparietal sulcus (IPS) are implicated in the control of eye movements. However, it remains unknown what differential contributions the two areas make to the programming of visually-guided and internally-guided saccades. In this study we tested the hypotheses that sPCS and IPS distinctly encode internally-guided saccades and visually-guided saccades. We scanned subjects with fMRI while they generated visually-guided and internally-guided delayed saccades. We used multi-voxel pattern analysis to test whether patterns of cue related, preparatory and saccade related activation could be used to predict the direction of the planned eye movement. Results indicate that patterns in the human sPCS predicted internally-guided saccades but not visually-guided saccades in all trial periods and patterns in the IPS predicted internally-guided saccades and visually-guided saccades equally well. The results support the hypothesis that the human sPCS and IPS make distinct contributions to the control of volitional eye movements.
Neurons in the dorsal frontal and parietal cortex are thought to transform incoming visual signals into the spatial goals of saccades, a process known as target selection. Here, we used functional magnetic resonance imaging (fMRI) to test how target selection may generalize beyond visual transformations when auditory and semantic information is used for selection. We compared activity in the frontal and parietal cortex when subjects made visually, aurally, and semantically guided saccades to one of fourts. Selection was based on a visual cue (i.e., one of the dots blinked), an auditory cue (i.e., a white noise burst was emitted at one of the dots’ location), or a semantic cue (i.e., the color of one of the dots was spoken). Although neural responses in frontal and parietal cortex were robust, they were non-specific with regard to the type of information used for target selection. Decoders, however, trained on the patterns of activity in the intraparietal sulcus could classify both the type of cue used for target selection and the direction of the saccade. Therefore, we find evidence that the posterior parietal cortex is involved in transforming multimodal inputs into general spatial representations that can be used to guide saccades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.