The maximum likelihood(ML) estimation of the scale parameters of an exponential distribution based on progressive Type II censored samples is given. The sample is multiply censored (some middle observations being censored); however, the ML method does not admit explicit solutions. In this paper, we propose multiply progressive Type II censoring. This paper presents the statistical inference on the scale parameter for the exponential distribution when samples are multiply progressive Type II censoring. The scale parameter is estimated by approximate ML methods that use two different Taylor series expansion types (AMLE I , AMLE II ). We also obtain the maximum likelihood estimator(MLE) of the scale parameter σ under the proposed multiply progressive Type II censored samples. We compare the estimators in the sense of the mean square error(MSE). The simulation procedure is repeated 10,000 times for the sample size n = 20 and 40 and various censored schemes. The AMLE II is better than MLE and AMLE I in the sense of the MSE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.