The Chenopodium genus comprises ~150 species, including Chenopodium quinoa and Chenopodium album, two important crops with high nutritional value. To elucidate the phylogenetic relationship between the two species, the complete chloroplast (cp) genomes of these species were obtained by next generation sequencing. We performed comparative analysis of the sequences and, using InDel markers, inferred phylogeny and genetic diversity of the Chenopodium genus. The cp genome is 152,099 bp (C. quinoa) and 152,167 bp (C. album) long. In total, 119 genes (78 protein-coding, 37 tRNA, and 4 rRNA) were identified. We found 14 (C. quinoa) and 15 (C. album) tandem repeats (TRs); 14 TRs were present in both species and C. album and C. quinoa each had one species-specific TR. The trnI-GAU intron sequences contained one (C. quinoa) or two (C. album) copies of TRs (66 bp); the InDel marker was designed based on the copy number variation in TRs. Using the InDel markers, we detected this variation in the TR copy number in four species, Chenopodium hybridum, Chenopodium pumilio, Chenopodium ficifolium, and Chenopodium koraiense, but not in Chenopodium glaucum. A comparison of coding and non-coding regions between C. quinoa and C. album revealed divergent sites. Nucleotide diversity >0.025 was found in 17 regions—14 were located in the large single copy region (LSC), one in the inverted repeats, and two in the small single copy region (SSC). A phylogenetic analysis based on 59 protein-coding genes from 25 taxa resolved Chenopodioideae monophyletic and sister to Betoideae. The complete plastid genome sequences and molecular markers based on divergence hotspot regions in the two Chenopodium taxa will help to resolve the phylogenetic relationships of Chenopodium.
We report the complete chloroplast genomes of four Viola species (V. mirabilis, V. phalacrocarpa, V. raddeana, and V. websteri) and the results of a comparative analysis between these species and the published plastid genome of the congeneric species V. seoulensis. The total genome length of the five Viola species, including the four species analyzed in this study and the species analyzed in the previous study, ranged from 156,507 (V. seoulensis) to 158,162 bp (V. mirabilis). The overall GC contents of the genomes were almost identical (36.2–36.3%). The five Viola plastomes each contained 111 unique genes comprising 77 protein-coding genes, 30 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. Among the annotated genes, 16 contained one or two introns. Based on the results of a chloroplast genome structure comparison using MAUVE, all five Viola plastomes were almost identical. Additionally, the large single copy (LSC), inverted repeat (IR), and small single copy (SSC) junction regions were conserved among the Viola species. A total of 259 exon, intron, and intergenic spacer (IGS) fragments were compared to verify the divergence hotspot regions. The nucleotide diversity (Pi) values ranged from 0 to 0.7544. The IR region was relatively more conserved than the LSC and SSC regions. The Pi values in ten noncoding regions were relatively high (>0.03). Among these regions, all but rps19-trnH, petG-trnW, rpl16-rps3, and rpl2-rpl23 represent useful molecular markers for phylogenetic studies and will be helpful to resolve the phylogenetic relationships of Viola. The phylogenetic tree, which used 76 protein-coding genes from 21 Malpighiales species and one outgroup species (Averrhoa carambola), revealed that Malpighiales is divided into five clades at the family level: Erythroxylaceae, Chrysobalanaceae, Euphorbiaceae, Salicaceae, and Violaceae. Additionally, Violaceae was monophyletic, with a bootstrap value of 100% and was divided into two subclades.
We report the complete chloroplast genomes of three Adenophora species, and analyzed these compared them to five published Campanuloid plastomes. The total genome length of Adenophora divaricata, Adenophora erecta, and Adenophora stricta ranged from 159,759 to 176,331 bp. Among the eight Campanuloid species, many inversions were found to be only in the LSC region. IR contraction was also identified in the plastid genome of Adenophora stricta. Phylogenetic analyses based on 76 protein coding genes showed that Campanuloids are monophyletic, and are composed of two major groups: Campanula s. str. and Rapunculus. When we compared each homologous locus among the four Adenophora species, ten regions showed high nucleotide divergence value (>0.03). Among these, nine loci, excepting ycf3-rpoB, are considered to be useful molecular markers for phylogenetic studies and will be helpful to resolve phylogenetic relationships of Adenophora.
We have determined the complete mitochondrial genome of Gekko japonicus, whose status as an endemic or invasive species is currently under debate in Korea. The total genome size is 16 544 bp and consists of 13 protein-coding genes, 2 rRNA (12S and 16S RNA) genes, 22 tRNAs and 2 non-coding regions. The A + T content of the genome is 55.8% (A, 31.2%; C, 29.4%; T, 24.6%; G, 14.9%). Phylogenetic analysis shows that G. japonicus has a close phylogenetic relationship with both G. swinhonis and G. chinensis. Our result will facilitate further genetic studies of this species to ascertain its species status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.