Controlling the motions of the front and rear legs and regulating the compliance of the legs are important for stable gallop. In this paper, a new method called ellipse-based trajectory generation method (ETGM) to generate foot trajectories for galloping quadrupeds is proposed. Unlike many previous works which attempted controlling foot trajectory, which need a sophisticated algorithm to avoid forcing the feet out of the workspace and thus making galloping unstable, a new trajectory generation method is based on an elliptic trajectory with constant radii but with changes in its center position. The rotational speed of the elliptic trajectory or the orbit trajectory is determined by the desired height of galloping and the running speed. It is assumed that each leg of a galloping quadruped robot has passive ankle joints with passive springs, thus acting as a spring loaded inverted pendulum (SLIP). To check the performance and effectiveness of the proposed method, a series of computer simulations of a 2-D quadruped robot galloping in the sagittal plane were performed. The simulation results show that the proposed method is simple to implement and very effective in generating stable gallop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.