This study reports on the implementation of Bayesian inference to improve the estimation of remote-depth profiling for low-level radioactive contaminants with a low-resolution NaI(Tl) detector. In particular, we demonstrate that this approach offers results that are more reliable because it provides a mean value with a 95% credible interval by determining the probability distributions of the burial depth and activity of a radioisotope in a single measurement. To evaluate the proposed method, the simulation was compared with experimental measurements. The simulation showed that the proposed method was able to detect the depth of a Cs-137 point source buried below 60 cm in sand, with a 95% credible interval. The experiment also showed that the maximum detectable depths for weakly active 0.94-μCi Cs-137 and 0.69-μCi Co-60 sources buried in sand was 21 cm, providing an improved performance compared to existing methods. In addition, the maximum detectable depths hardly degraded, even with a reduced acquisition time of less than 60 s or with gain-shift effects; therefore, the proposed method is appropriate for the accurate and rapid non-intrusive localization of buried low-level radioactive contaminants during in situ measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.