Postharvest storability is an important trait for breeding strawberry (Fragaria × ananassa Duch.). We evaluated the postharvest fruit quality of five strawberry cultivars (‘Durihyang’, ‘Kingsberry’, ‘Maehyang’, ‘Seolhyang’, and ‘Sunnyberry’) and identified differences in their fruit ripening during the transition from the big-green to fully-red stage between two cultivars with the highest (‘Sunnyberry’) and lowest (‘Kingsberry’) storability, using comparative transcriptome and -metabolome analysis. The differentially expressed genes revealed transcriptome changes related to anthocyanin biosynthesis and cell walls. Consistently, the metabolites of both cultivars showed general changes during ripening along with cultivar-specific characteristics in sugar and amino acid profiles. To identify the genes responsible for storability differences, we surveyed the expression of transcription factors, and found that the expression levels of WRKY31, WRKY70, and NAC83 correlated with delayed senescence and increased storability. Among them, the expression levels of NAC83, and its downstream target genes, in the five cultivars suggested that NAC83 expression can be used to predict postharvest strawberry fruit storability.
Gray mold (Botrytis cinerea) is a fungal plant pathogen causing postharvest decay in strawberry fruit. Here, we conducted a comparative transcriptome analysis to identify differences in gene expression between the immature-green (IG) and mature-red (MR) stages of the “Sunnyberry” (gray mold-resistant) and “Kingsberry” (gray mold susceptible) strawberry cultivars. Most of the genes involved in lignin and alkane-type wax biosynthesis were relatively upregulated in “Sunnyberry”. However, pathogenesis-related proteins encoding R- and antioxidant-related genes were comparatively upregulated in “Kingsberry”. Analysis of gene expression and physiological traits in the presence and absence of B. cinerea inoculation revealed that the defense response patterns significantly differed between IG and MR rather than the cultivars. “Kingsberry” showed higher antioxidant induction at IG and upregulated hemicellulose-strengthening and R genes at MR. Hence, “Sunnyberry” and “Kingsberry” differed mainly in terms of the expression levels of the genes forming cuticle, wax, and lignin and controlling the defense responses. These discrepancies might explain the relative difference between these strawberry cultivars in terms of their postharvest responses to B. cinerea.
Strawberry is an important fruit crop and a model for studying non-climacteric fruit ripening. Fruit ripening and senescence influence strawberry fruit quality and postharvest storability, and have been intensively studied. However, genetic and physiological differences among cultivars preclude consensus understanding of these processes. We therefore performed a meta-analysis by mapping existing transcriptome data to the newly published and improved strawberry reference genome and extracted meta-differentially expressed genes (meta-DEGs) from six cultivars to provide an expanded transcriptomic view of strawberry ripening. We identified cultivar-specific transcriptome changes in anthocyanin biosynthesis-related genes and common changes in cell wall degradation, chlorophyll degradation, and starch metabolism-related genes during ripening. We also identified 483 meta-DEGs enriched in gene ontology categories related to photosynthesis and amino acid and fatty acid biosynthesis that had not been revealed in previous studies. We conclude that meta-analysis of existing transcriptome studies can effectively address fundamental questions in plant sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.