SUMMARY Glioblastoma multiforme (GBM) displays cellular hierarchies harboring a subpopulation of stem-like cells (GSCs). Enhancer of Zeste Homolog 2 (EZH2), the lysine methyl transferase of Polycomb repressive complex 2, mediates transcriptional repression of pro-differentiation genes in both normal and neoplastic stem cells. An oncogenic role of EZH2 as a transcriptional silencer is well established; however, additional functions of EZH2 are incompletely understood. Here we show that EZH2 binds to and methylates STAT3, leading to enhanced STAT3 activity by increased tyrosine phosphorylation of STAT3. The EZH2-STAT3 interaction preferentially occurs in GSCs relative to non-stem bulk tumor cells, and it requires a specific phosphorylation of EZH2. Inhibition of EZH2 reverses the silencing of Polycomb target genes and diminishes STAT3 activity, suggesting therapeutic strategies.
A number of recent reports have demonstrated that only CD133-positive cancer cells of glioblastoma multiforme (GBM) have tumor-initiating potential. These findings raise an attractive hypothesis that GBMs can be cured by eradicating CD133-positive cancer stem cells (CSCs), which are a small portion of GBM cells. However, as GBMs are known to possess various genetic alterations, GBMs might harbor heterogeneous CSCs with different genetic alterations. Here, we compared the clinical characteristics of two GBM patient groups divided according to CD133-positive cell ratios. The CD133-low GBMs showed more invasive growth and gene expression profiles characteristic of mesenchymal or proliferative subtypes, whereas the CD133-high GBMs showed features of cortical and well-demarcated tumors and gene expressions typical of proneuronal subtype. Both CD133-positive and CD133-negative cells purified from four out of six GBM patients produced typical GBM tumor masses in NOD-SCID brains, whereas brain mass from CD133-negative cells showed more proliferative and angiogenic features compared to that from CD133-positive cells. Our results suggest, in contrast to previous reports that only CD133-positive cells of GBMs can initiate tumor formation in vivo CD133-negative cells also possess tumor-initiating potential, which is indicative of complexity in the identification of cancer cells for therapeutic targeting. A recent concept in brain tumor biology is that brain tumors arise from cancer stem cells (CSCs) that are CD133 positive (CD133 ( þ ) ). It has been reported that a small number of CD133 ( þ ) glioblastoma multiforme (GBM) cells are able to recapitulate the original tumor in vivo, whereas millions of CD133-negative (CD133 (À) ) cells could not produce brain tumor masses. 1-6 However, accumulating evidence suggests that CD133 (À) GBM cells can also regenerate heterogenous tumors in vivo, 7,8 and generation of the huge and rapidly growing tumors by only CD133 ( þ ) CSCs would be difficult because more than 50% of GBM patients have few CD133 ( þ ) cells. 9 As a majority of neurogenic astrocytes in the adult brain are not recognized by a CD133 antibody, 8 it is likely that CD133 might be newly expressed in GBM CSCs that are derived from CD133 (À) adult neural stem cells (NSCs) or terminally differentiated brain cells, such as astrocytes, neurons, and oligodendrocytes. Given that the gene expression profile is changed when GBM recurs after treatments, 10 it is plausible that new CD133 expression may occur if the characteristics of CSCs are changed or if some CSCs are selected by treatment. Furthermore, the wide-range variation in CD133 ( þ ) cell ratio (0.1-50% in GBM patients) 1-6 also suggests the existence of other GBM CSCs that do not express CD133.Therefore, we hypothesize that there are several kinds of CSCs in the tumor mass of GMB, and these diverse CSCs
Tumor recurrence following treatment is the major cause of mortality for glioblastoma multiforme (GBM) patients. Thus, insights on the evolutionary process at recurrence are critical for improved patient care. Here, we describe our genomic analyses of the initial and recurrent tumor specimens from each of 38 GBM patients. A substantial divergence in the landscape of driver alterations was associated with distant appearance of a recurrent tumor from the initial tumor, suggesting that the genomic profile of the initial tumor can mislead targeted therapies for the distally recurred tumor. In addition, in contrast to IDH1-mutated gliomas, IDH1-wild-type primary GBMs rarely developed hypermutation following temozolomide (TMZ) treatment, indicating low risk for TMZ-induced hypermutation for these tumors under the standard regimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.