Background & Aims Clostridium difficile (C.difficile) is the leading cause of nosocomial infectious diarrhea. Increasing incidence, antibiotic resistance and more virulent strains have dramatically increased the number of C.difficile-related deaths worldwide. The innate host response mechanisms to C.difficile are not resolved; however, we hypothesize that hypoxia-inducible factor (HIF-1) plays an innate protective role in C.difficile colitis. Thus, we assessed the impact of C.difficile toxins on the regulation of HIF-1 and evaluated the role of HIF-1α in C.difficile-mediated injury/inflammation. Methods In vitro studies assessed HIF-1α mRNA, protein levels and DNA binding events in human mucosal biopsies and Caco-2 cells exposed to C.difficile toxins. In vivo studies employed the murine ileal loop model of C.difficile toxin-induced intestinal injury. Mice with targeted deletion of HIF-1α in the intestinal epithelium were used to assess the impact of HIF-1α signaling in response to C.difficile toxin. Results Mucosal biopsies and Caco-2 cells exposed to C.difficile toxin displayed a significant increase in HIF-1α transcription and protein levels. Toxin-induced DNA binding was also observed in Caco-2 cells. Toxin-induced HIF-1α accumulation was attenuated by nitric oxide synthase inhibitors. In vivo, deletion of intestinal epithelial HIF-1α resulted in more severe toxin-induced intestinal injury and inflammation. In contrast, stabilization of HIF-1α, with dimethyloxallyl glycine, attenuated toxin-induced injury and inflammation. This was associated with an induction of HIF-1-regulated protective factors including VEGFa, CD73 and intestinal trefoil factor and down-regulation of proinflammatory molecules TNF and KC. Conclusions Our study is the first to describe the innate protective role for HIF-1α in response to C.difficile toxins. Harnessing the innate protective actions of HIF-1α in response to C.difficile toxins may represent a novel form of therapy for C.difficile-associated disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.