The enzyme tRNase Z, a member of the metallo-β-lactamase family, endonucleolytically removes 3’ trailers from precursor tRNAs, preparing them for CCA addition and aminoacylation. The short form of tRNase Z, tRNase ZS, functions as a homodimer and is found in all prokaryotes and some eukaryotes. The long form, tRNase ZL, related to tRNase ZS through tandem duplication and found only in eukaryotes, possesses ~2,000-fold greater catalytic efficiency than tRNase ZS. tRNase ZL consists of related but diverged amino and carboxy domains connected by a flexible linker (also referred to as a flexible tether) and functions as a monomer. The amino domain retains the flexible arm responsible for substrate recognition and binding while the carboxy domain retains the active site. The linker region was explored by Ala-scanning through two conserved regions of D. melanogaster tRNase Z: NdomTprox, located at the carboxy end of the amino domain proximal to the linker, and Tflex, a flexible site in the linker. Periodic substitutions in a hydrophobic patch (F329 and L332) at the carboxy end of NdomTprox show 2,700 and 670-fold impairment relative to wild type, respectively, accompanied by reduced linker flexibility at N-T inside the Ndom- linker boundary. The Ala substitution for N378 in the Tflex region has 10-fold higher catalytic efficiency than wild type and locally decreased flexibility, while the Ala substitution at R382 reduces catalytic efficiency ~50-fold. These changes in pre-tRNA processing kinetics and protein flexibility are interpreted in light of a recent crystal structure for S. cerevisiae tRNase Z, suggesting transmission of local changes in hydrophobicity into the skeleton of the amino domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.