Diet strongly affects human health, partly by modulating gut microbiome composition. We used diet inventories and 16S rDNA sequencing to characterize fecal samples from 98 individuals. Fecal communities clustered into enterotypes distinguished primarily by levels of Bacteroides and Prevotella. Enterotypes were strongly associated with long-term diets, particularly protein and animal fat (Bacteroides) versus carbohydrates (Prevotella). A controlled-feeding study of 10 subjects showed that microbiome composition changed detectably within 24 hours of initiating a high-fat/low-fiber or low-fat/high-fiber diet, but that enterotype identity remained stable during the 10-day study. Thus, alternative enterotype states are associated with long-term diet.
Motivation: The Nearest Alignment Space Termination (NAST) tool is commonly used in sequence-based microbial ecology community analysis, but due to the limited portability of the original implementation, it has not been as widely adopted as possible. Python Nearest Alignment Space Termination (PyNAST) is a complete reimplementation of NAST, which includes three convenient interfaces: a Mac OS X GUI, a command-line interface and a simple application programming interface (API).Results: The availability of PyNAST will make the popular NAST algorithm more portable and thereby applicable to datasets orders of magnitude larger by allowing users to install PyNAST on their own hardware. Additionally because users can align to arbitrary template alignments, a feature not available via the original NAST web interface, the NAST algorithm will be readily applicable to novel tasks outside of microbial community analysis.Availability: PyNAST is available at http://pynast.sourceforge.net.Contact: rob.knight@colorado.edu
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.