A basic-yet nontrivial-function which neocortical circuitry must satisfy is the ability to maintain stable spiking activity over time. Stable neocortical activity is asynchronous, critical, and low rate, and these features of spiking dynamics contribute to efficient computation and optimal information propagation. However, it remains unclear how neocortex maintains this asynchronous spiking regime. Here we algorithmically construct spiking neural network models, each composed of 5000 neurons. Network construction synthesized topological statistics from neocortex with a set of objective functions identifying naturalistic low-rate, asynchronous, and critical activity. We find that simulations run on the same topology exhibit sustained asynchronous activity under certain sets of initial membrane voltages but truncated activity under others. Synchrony, rate, and criticality do not provide a full explanation of this dichotomy. Consequently, in order to achieve mechanistic understanding of sustained asynchronous activity, we summarized activity as functional graphs where edges between units are defined by pairwise spike dependencies. We then analyzed the intersection between functional edges and synaptic connectivity-i.e. recruitment networks. Higherorder patterns, such as triplet or triangle motifs, have been tied to cooperativity and integration. We find, over time in each sustained simulation, low-variance periodic transitions between isomorphic triangle motifs in the recruitment networks. We quantify the phenomenon as a Markov process and discover that if the network fails to engage this stereotyped regime of motif dominance "cycling", spiking activity truncates early. Cycling of motif dominance generalized across manipulations of synaptic weights and topologies, demonstrating the robustness of this regime for maintenance of network activity. Our results point to the crucial role of excitatory higher-order patterns in sustaining asynchronous activity in sparse recurrent networks. They also provide a possible explanation why such connectivity and activity patterns have been prominently reported in neocortex.
Many studies have demonstrated the prominence of higher-order patterns in excitatory synaptic connectivity as well as activity in neocortex. Surveyed as a whole, these results suggest that there may be an essential role for higher-order patterns in neocortical function. In order to stably propagate signal within and between regions of neocortex, the most basic -yet nontrivial -function which neocortical circuitry must satisfy is the ability to maintain stable spiking activity over time. Here we algorithmically construct spiking neural network models comprised of 5000 neurons using topological statistics from neocortex and a set of objective functions that identify networks which produce naturalistic low-rate, asynchronous, and critical activity. We find that the same network topology can exhibit either sustained activity under one set of initial membrane voltages or truncated activity under a different set. Yet these two outcomes are not readily differentiated by rate or criticality. By summarizing the statistical dependencies in the pairwise activity of neurons as directed weighted functional networks, we examined the transient manifestations of higher-order motifs in the functional networks across time. We find that stereotyped low variance cyclic transitions between three isomorphic triangle motifs, quantified as a Markov process, are required for sustained activity. If the network fails to engage the dynamical regime characterized by a recurring stable pattern of motif dominance, spiking activity ceased. Motif cycling generalized across manipulations of synaptic weights and across topologies, demonstrating the robustness of this dynamical regime for sustained spiking in critical asynchronous network activity. Our results point to the necessity of higher-order patterns amongst excitatory connections for sustaining activity in sparse recurrent networks. They also provide a possible explanation as to why such excitatory synaptic connectivity and activity patterns have been prominently reported in neocortex. Author summaryHere we address two questions. First, it remains unclear how activity propagates stably through a network since neurons are leaky and connectivity is sparse and weak. Second, higher order patterns abound in neocortex, hinting at potential functional relevance for their presence. Several lines of evidence suggest that higher-order network interactions September 16, 2019 1/23 may be instrumental for spike propagation. For example, excitatory synaptic connectivity shows a prevalence of local neuronal cliques and patterns, and propagating activity in vivo displays elevated clustering dominated by specific triplet motifs. In this study we demonstrate a mechanistic link between activity propagation and higher-order motifs at the level of individual neurons and across networks. We algorithmically build spiking neural network (SNN) models to mirror the topological and dynamical statistics of neocortex. Using a combination of graph theory, information theory, and probabilistic tools, we show that higher ...
Everything that the brain sees must first be encoded by the retina, which maintains a reliable representation of the visual world in many different, complex natural scenes while also adapting to stimulus changes. Decomposing the population code into independent and cell-cell interactions reveals how broad scene structure is encoded in the adapted retinal output. By recording from the same retina while presenting many different natural movies, we see that the population structure, characterized by strong interactions, is consistent across both natural and synthetic stimuli. We show that these interactions contribute to encoding scene identity. We also demonstrate that this structure likely arises in part from shared bipolar cell input as well as from gap junctions between retinal ganglion cells and amacrine cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.