The notion of using the evolutionary history encoded within multiple sequence alignments to predict allosteric mechanisms is appealing. In this approach, correlated mutations are expected to reflect coordinated changes that maintain intramolecular coupling between residue pairs. Despite much early fanfare, the general suitability of correlated mutations to predict allosteric couplings has not yet been established. Lack of progress along these lines has been hindered by several algorithmic limitations including phylogenetic artifacts within alignments masking true covariance and the computational intractability of consideration of more than two correlated residues at a time. Recent progress in algorithm development, however, has been substantial with a new generation of correlated mutation algorithms that have made fundamental progress toward solving these difficult problems. Despite these encouraging results, there remains little evidence to suggest that the evolutionary constraints acting on allosteric couplings are sufficient to be recovered from multiple sequence alignments. In this review, we argue that due to the exquisite sensitivity of protein dynamics, and hence that of allosteric mechanisms, the latter vary widely within protein families. If it turns out to be generally true that even very similar homologs display a wide divergence of allosteric mechanisms, then even a perfect correlated mutation algorithm could not be reliably used as a general mechanism for discovery of allosteric pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.