This paper provides a discussion of the technical and theoretical ambiguities, requirements, and limitations to develop a practical implementation of the IMO Second Generation Intact Stability criteria. This discussion is the result of industry collaboration, where two implementations of the guidelines were developed jointly, albeit independently. Both implementations were then used to assess four sample cases: C11 container ship, KRISO container ship (KCS), barge, and fishing vessel, for which the detailed particulars and results are given. Conclusions on the practicalities of use, a comparison of the results, and suggestions on how the criteria might be integrated into a workflow are also given.
Dynamic global hull girder response is an important part of the structural design of a ship, especially one with significant length and bow flare. Experimental studies were conducted at the University of New Orleans’ towing tank where a segmented model of a containership was tested in head seas and zero speed. Bending strain at 3 locations along the model’s hull was measured. The results showed peak sagging bending moment that is approximately 25% larger than the peak hogging bending moment at midship. Minor differences were found between positive heave amplitude and negative heave peaks. The results of the experiment were also compared to an “in-house” non-linear quadratic strip theory computer program. The experimental results compared quite well with the numerical results. The results of the experiments and computer program indicate that the dynamic bending moment response is predominantly a second-order effect and linear predictions are not sufficient.
The dynamics of high-speed planing craft are complex and nonlinear. Standard analysis methods, such as linear potential theory, while convenient and computationally efficient, are often not suitable for use in predicting the dynamics of such craft because physical realities or design requirements invalidate the inherent assumptions. High-fidelity methods, such as state-of-the-art CFD simulations, can offer accurate solutions, but these methods are limited by computational cost and numerical sensitivity. In addition, these methods are not efficient enough to provide rapid evaluation of operability, i.e. simulations over a wide range of operating conditions and environments. This leaves few practical analysis options for small, high-speed craft designers who need to perform such predictions. In this paper, the authors present a neural-corrector method that shows promise in providing efficient predictions of vertical planing craft motions. The method retains higher-order terms typically truncated in the classical coupled 2-DOF system of ordinary differential equations using Long Short-Term Memory (LSTM) recurrent neural networks. In this manner, the robust solution provided by the linear model is retained, and the LSTM networks act as higher-order correctors. The correctors primarily regress on the solution, affording familiar numerical integration techniques for systems of nonlinear differential equations. Training and validation results from the method are compared to nonlinear simulations of 2-DOF motion of a Generic Prismatic Planing Hull (GPPH) at forward speed in head seas, with time histories given for both regular and irregular waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.