Organisms featuring wide trait variability and occurring in a wide range of habitats, such as the ovoviviparous New Zealand freshwater snail Potamopyrgus antipodarum, are ideal models to study adaptation. Since the mid‐19th century, P. antipodarum, characterized by extremely variable shell morphology, has successfully invaded aquatic areas on four continents. Because these obligately and wholly asexual invasive populations harbor low genetic diversity compared to mixed sexual/asexual populations in the native range, we hypothesized that (1) this phenotypic variation in the invasive range might be adaptive with respect to colonization of novel habitats, and (2) that at least some of the variation might be caused by phenotypic plasticity. We surveyed 425 snails from 21 localities across northwest Europe to attempt to disentangle genetic and environmental effects on shell morphology. We analyzed brood size as proxy for fitness and shell geometric morphometrics, while controlling for genetic background. Our survey revealed 10 SNP genotypes nested into two mtDNA haplotypes and indicated that mainly lineage drove variation in shell shape but not size. Physicochemical parameters affected both shell shape and size and the interaction of these traits with brood size. In particular, stronger stream flow rates were associated with larger shells. Our measurements of brood size suggested that relatively larger slender snails with relatively large apertures were better adapted to strong flow than counterparts with broader shells and relatively small apertures. In conclusion, the apparent potential to modify shell morphology plays likely a key role in the invasive success of P. antipodarum; the two main components of shell morphology, namely shape and size, being differentially controlled, the former mainly genetically and the latter predominantly by phenotypic plasticity.
Reciprocal co-evolving interactions between hosts and parasites are a primary source of strong selection that can promote rapid and often population- or genotype-specific evolutionary change. These host-parasite interactions are also a major source of disease. Despite their importance, very little is known about the genomic basis of co-evolving host-parasite interactions in natural populations, especially in animals. Here, we use gene expression and sequence evolution approaches to take critical steps towards characterizing the genomic basis of interactions between the freshwater snail Potamopyrgus antipodarum and its co-evolving sterilizing trematode parasite, Microphallus sp., a textbook example of natural coevolution. We found that Microphallus-infected P. antipodarum exhibit systematic downregulation of genes relative to uninfected P. antipodarum. The specific genes involved in parasite response differ markedly across lakes, consistent with a scenario where population-level co-evolution is leading to population-specific host-parasite interactions and evolutionary trajectories. We also used an F -based approach to identify a set of loci that represent promising candidates for targets of parasite-mediated selection across lakes as well as within each lake population. These results constitute the first genomic evidence for population-specific responses to co-evolving infection in the P. antipodarum-Microphallus interaction and provide new insights into the genomic basis of co-evolutionary interactions in nature.
How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction.
Polyploidy is increasingly recognized as a driver of biological diversity. How and why polyploidization affects gene expression is critical to understanding the link between ploidy elevation and diversification. In polyploid plants, multiple studies have demonstrated that ploidy elevation can confer major but variable consequences for gene expression, ranging from gene-by-gene alterations to entirely silenced genomes. By contrast, animal polyploids remain largely uncharacterized. Accordingly, how animals respond to and manage polyploidy events is not understood. Here, we address this important knowledge gap by analyzing transcriptomes from a triploid hybrid animal, a unisexual Ambystoma salamander, and three sexual Ambystoma species that represent all three parental genomes in the unisexual. We used a novel bioinformatics pipeline that includes competitively mapping triploid sequences to a reference set of orthologous genes in the sexual species to evaluate subgenome expression. Our comparisons of gene expression levels across the three parental genomes revealed that the unisexual triploid displays a pattern of genome balance, where 72% of the genes analyzed were expressed equally among the subgenomes. This result is strikingly different from the genome imbalance typically observed in hybrid polyploid plants. Our analyses represent the first to address gene expression in a triploid hybrid animal and introduce a novel bioinformatic framework for analyzing transcriptomic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.