Nutrient utilization traits can be used to link the ecophysiology of phytoplankton to population dynamic models and the structure of communities across environmental gradients. Here we analyze a comprehensive literature compilation of four traits: maximum nutrient uptake rate; the half‐saturation constant for nutrient uptake; the minimum subsistence quota, measured for nitrate and phosphate; and maximum growth rate. We also use these traits to analyze two composite traits, uptake affinity and scaled uptake affinity. All traits tend to increase with cell volume, except for scaled uptake affinity and maximum growth rate, which tend to decline with cell volume. Most scaling relationships are the same for freshwater and marine species, although important differences exist. Most traits differ on average between major taxa, but between‐taxon variation is nearly always due to between‐taxon variation in volume. There is some evidence for between‐trait correlations that could constrain trait evolution, but these correlations are difficult to disentangle from correlation driven by cell volume. These results should enhance the parameterization of models that use size or taxonomic group to structure physiological variation in phytoplankton communities.
Resource pulses are infrequent, large-magnitude, and short-duration events of increased resource availability. They include a diverse set of extreme events in a wide range of ecosystems, but identifying general patterns among the diversity of pulsed resource phenomena in nature remains an important challenge. Here we present a meta-analysis of resource pulse-consumer interactions that addresses four key questions: (1) Which characteristics of pulsed resources best predict their effects on consumers? (2) Which characteristics of consumers best predict their responses to resource pulses? (3) How do the effects of resource pulses differ in different ecosystems? (4) What are the indirect effects of resource pulses in communities? To investigate these questions, we built a data set of diverse pulsed resource-consumer interactions from around the world, developed metrics to compare the effects of resource pulses across disparate systems, and conducted multilevel regression analyses to examine the manner in which variation in the characteristics of resource pulseconsumer interactions affects important aspects of consumer responses.Resource pulse magnitude, resource trophic level, resource pulse duration, ecosystem type and subtype, consumer response mechanisms, and consumer body mass were found to be key explanatory factors predicting the magnitude, duration, and timing of consumer responses. Larger consumers showed more persistent responses to resource pulses, and reproductive responses were more persistent than aggregative responses. Aquatic systems showed shorter temporal lags between peaks of resource availability and consumer response compared to terrestrial systems, and temporal lags were also shorter for smaller consumers compared to larger consumers. The magnitude of consumer responses relative to their resource pulses was generally smaller for the direct consumers of primary resource pulses, compared to consumers at greater trophic distances from the initial resource pulse. In specific systems, this data set showed both attenuating and amplifying indirect effects. We consider the mechanistic processes behind these patterns and their implications for the ecology of resource pulses.
Changes in marine plankton communities driven by environmental variability impact the marine food web and global biogeochemical cycles of carbon and other elements. To predict and assess these community shifts and their consequences, ecologists are increasingly investigating how the functional traits of plankton determine their relative fitness along environmental and biological gradients. Laboratory, field and modelling studies are adopting this trait-based approach to map the biogeography of plankton traits that underlies variations in plankton communities. Here, we review progress towards understanding the regulatory roles of several key plankton functional traits, including cell size, N 2 -fixation and mixotrophy among phytoplankton, and body size, ontogeny and feeding behaviour for zooplankton. The trait biogeographical approach sheds light on what structures plankton communities in the current ocean, as well as under climate change scenarios, and also allows for finer resolution of community function because community trait composition determines the rates of significant processes, including carbon export. Although understanding of trait biogeography is growing, uncertainties remain that stem, in part, from the paucity of observations describing plankton functional traits. Thus, in addition to recommending widespread adoption of the trait-based approach, we advocate for enhanced collection, standardisation and dissemination of plankton functional trait data.
Volatile communication between plants causing enhanced defence has been controversial. Early studies were not replicated, and influential reviews questioned the validity of the phenomenon. We collected 48 well-replicated studies and found overall support for the hypothesis that resistance increased for individuals with damaged neighbours. Laboratory or greenhouse studies and those conducted on agricultural crops showed stronger induced resistance than field studies on undomesticated species, presumably because other variation had been reduced. A cumulative analysis revealed that early, non-replicated studies were more variable and showed less evidence for communication. Effects of habitat and plant growth form were undetectable. In most cases, the mechanisms of resistance and alternative hypotheses were not considered. There was no indication that some response variables were more likely to produce large effects. These results indicate that plants of diverse taxonomic affinities and ecological conditions become more resistant to herbivores when exposed to volatiles from damaged neighbours.
Light-dependent growth of phytoplankton is a fundamental process in marine ecosystems, but we lack a comprehensive view of how light utilization traits vary across genotypes and species, and how this variation is structured by cell size, taxonomy, and environmental gradients. Here, we compile 308 growth-irradiance experiments performed on 119 species of marine phytoplankton from all major functional groups, and characterize growth-irradiance relationships in terms of the initial slope of the growth-irradiance curve (a), the optimal irradiance above which growth declines (I opt ), and the maximum growth rate (l max ). We find that a declines with increasing cell size, although cell size appears to be a weak constraint on this trait. There are significant differences across taxa in a and l max , with dinoflagellates, raphidophytes, and diazotrophs having the lowest values for both traits, and Phaeocystis spp. and diatoms having relatively high values. I opt does not vary among taxonomic groups, and all traits exhibit large variation within most groups. Open-ocean isolates tend to have higher a, lower I opt , and lower l max than coastal isolates, implying adaptation to low light and low productivity. The three traits are correlated across species such that a and I opt are negatively related while l max is positively correlated with both of these traits. There is some evidence that high a carries a cost of high N demand even when nitrogen (not light) is limiting. The results elucidate contrasting light-related ecological strategies across phytoplankton and should help improve the parameterization of major functional groups in biogeochemical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.