N 6-methyladenosine (m6A) is the most prevalent modification in eukaryotic messenger RNAs (mRNAs) and is interpreted by its readers, such as YTH domain-containing proteins, to regulate mRNA fate. Here we report the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; including IGF2BP1/2/3) as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence. In contrast to the mRNA-decay-promoting function of YTHDF2, IGF2BPs promote the stability and storage of their target mRNAs (e.g., MYC) in an m6A-depedent manner under normal and stress conditions and thus affect gene expression output. Moreover, the K homology (KH) domains of IGF2BPs are required for their recognition of m6A and are critical for their oncogenic functions. Our work therefore reveals a different facet of the m6A-reading process that promotes mRNA stability and translation, and highlights the functional importance of IGF2BPs as m6A readers in post-transcriptional gene regulation and cancer biology.
R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N-methyladenosine (mA) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/mA/MYC/CEBPA signaling.
N-methyladenosine (mA), the most prevalent internal modification in eukaryotic messenger RNAs (mRNAs), plays critical roles in many bioprocesses. However, its functions in normal and malignant hematopoiesis remain elusive. Here, we report that METTL14, a key component of the mA methyltransferase complex, is highly expressed in normal hematopoietic stem/progenitor cells (HSPCs) and acute myeloid leukemia (AML) cells carrying t(11q23), t(15;17), or t(8;21) and is downregulated during myeloid differentiation. Silencing of METTL14 promotes terminal myeloid differentiation of normal HSPCs and AML cells and inhibits AML cell survival/proliferation. METTL14 is required for development and maintenance of AML and self-renewal of leukemia stem/initiation cells (LSCs/LICs). Mechanistically, METTL14 exerts its oncogenic role by regulating its mRNA targets (e.g., MYB and MYC) through mA modification, while the protein itself is negatively regulated by SPI1. Collectively, our results reveal the SPI1-METTL14-MYB/MYC signaling axis in myelopoiesis and leukemogenesis and highlight the critical roles of METTL14 and mA modification in normal and malignant hematopoiesis.
The Human Cell Atlas (HCA) is expected to facilitate the creation of reference cell profiles, marker genes, and gene regulatory networks that will provide a deeper understanding of healthy and disease cell types from clinical biospecimens. The hematopoietic system includes dozens of distinct, transcriptionally coherent cell types, including intermediate transitional populations that have not been previously described at a molecular level. Using the first data release from the HCA bone marrow tissue project, we resolved common, rare, and potentially transitional cell populations from over 100,000 hematopoietic cells spanning 35 transcriptionally coherent groups across eight healthy donors using emerging new computational approaches. These data highlight novel mixed-lineage progenitor populations and putative trajectories governing granulocytic, monocytic, lymphoid, erythroid, megakaryocytic, and eosinophil specification. Our analyses suggest significant variation in cell-type composition and gene expression among donors, including biological processes affected by donor age. To enable broad exploration of these findings, we provide an interactive website to probe intra-cell and extra-cell population differences within and between donors and reference markers for cellular classification and cellular trajectories through associated progenitor states.
Summary Paragraph Advances in genetics and sequencing reveal a plethora of disease-associated and disease-causing genetic alterations. Resolving causality between genetics and disease requires generating accurate models for molecular dissection; however, the rapid expansion of single-cell landscapes presents a major challenge to accurate comparisons between mutants and their wild-type equivalents. Here, we generated mouse models of human severe congenital neutropenia (SCN) using patient-derived mutations in the Growth factor independent-1 (GFI1) transcription factor. To delineate the impact of SCN mutations, we generated single-cell references for granulopoietic genomic states with linked epitopes 1 , aligned mutant cells to their wild-type equivalent and identified differentially expressed genes and epigenetic loci. We find that Gfi1-target genes are altered sequentially, as cells traverse successive states during differentiation. These cell-state-specific insights facilitated genetic rescue of granulocytic specification but not post-commitment defects in innate-immune effector function; underscoring the importance of evaluating the impact of mutations and therapy within each relevant cell state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.