We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5 μm, and with the Mid-Infrared Instrument (MIRI) from 11 to 16 μm. At a separation of ∼0.″82 (87 − 31 + 108 au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5 μm. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5σ contrast limits of ∼1 × 10−5 and ∼2 × 10−4 at 1″ for NIRCam at 4.4 μm and MIRI at 11.3 μm, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3M Jup beyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by a BT-SETTL atmospheric model from 1 to 16 μm, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained between log L bol / L ⊙ = −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2 M Jup. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail.
We present the direct-imaging discovery of a giant planet orbiting the young star AF Lep, a 1.2 M ⊙ member of the 24 ± 3 Myr β Pic moving group. AF Lep was observed as part of our ongoing high-contrast imaging program targeting stars with astrometric accelerations between Hipparcos and Gaia that indicate the presence of substellar companions. Keck/NIRC2 observations in L ′ with the vector vortex coronagraph reveal a point source, AF Lep b, at ≈340 mas, which exhibits orbital motion at the 6σ level over the course of 13 months. A joint orbit fit yields precise constraints on the planet’s dynamical mass of 3.2 − 0.6 + 0.7 M Jup, semimajor axis of 8.4 − 1.3 + 1.1 au, and eccentricity of 0.24 − 0.15 + 0.27 . AF Lep hosts a debris disk located at ∼50 au, but it is unlikely to be sculpted by AF Lep b, implying there may be additional planets in the system at wider separations. The stellar inclination (i * = 54 − 9 + 11 ° ) and orbital inclination (i o = 50 − 12 + 9 ° ) are in good agreement, which is consistent with the system having spin–orbit alignment. AF Lep b is the lowest-mass imaged planet with a dynamical mass measurement and highlights the promise of using astrometric accelerations as a tool to find and characterize long-period planets.
Dynamical masses of giant planets and brown dwarfs are critical tools for empirically validating substellar evolutionary models and their underlying assumptions. We present a measurement of the dynamical mass and an updated orbit of PZ Tel B, a young brown dwarf companion orbiting a late-G member of the β Pic moving group. PZ Tel A exhibits an astrometric acceleration between Hipparcos and Gaia EDR3, which enables the direct determination of the companion’s mass. We have also acquired new Keck/NIRC2 adaptive optics imaging of the system, which increases the total baseline of relative astrometry to 15 yr. Our joint orbit fit yields a dynamical mass of 27 − 9 + 25 M Jup , semimajor axis of 27 − 4 + 14 au , eccentricity of 0.52 − 0.10 + 0.08 , and inclination of 91.73 − 0.32 + 0.36 ° . The companion’s mass is consistent within 1.1σ of predictions from four grids of hot-start evolutionary models. The joint orbit fit also indicates a more modest eccentricity of PZ Tel B than previous results. PZ Tel joins a small number of young (<200 Myr) systems with benchmark substellar companions that have dynamical masses and precise ages from moving group membership.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.