Decoupling the role of various stress components during atomic scale wear such as normal, shear, and hoop stressesremains one of the biggest challenges preventing a full understanding of how wear proceeds. Here we model atomic scale wear as two sets of thermally activated processes, where normal load drives bonding between surfaces, and lateral motion biases surface site hopping in the direction of sliding. We further utilize the model to explain the velocity-dependent wear behavior at the interface between an atomic force microscope tip and graphene oxide. The experimental and theoretical results show that, at tip speeds slow enough to saturate bond formation at the tip−sample interface, breaking these bonds is a thermally activated process with a rate that increases with speed. In addition, the theoretical model predicts additional wear dependencies on velocity also observed in the literature, where a decrease in wear with increasing velocity occurs when the tip moves too quickly for bonds to form on the surface, and wear independent of velocity occurs at high loads when the thermodynamic barrier to wear is vanishingly small. This theoretical framework potentially unifies the range of velocity-dependent wear behaviors found in previous studies of atomic scale wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.