Increases in cortical porosity (Ct.Po) and decreases in cortical thickness (Ct.Th) are associated with increased bone fragility. The purpose of this study was to validate an autosegmentation method for high-resolution peripheral quantitative computed tomography (HR-pQCT) scans to measure Ct.Po and Ct.Th and use it to compare Ct.Po and Ct.Th between pre-and postmenopausal women with normal, osteopenic, and osteoporotic areal bone mineral density (aBMD). The Ct.Po and Ct.Th measurements were validated using cadaver forearms (n ¼ 10) and micro-computed tomography (mCT) as the gold standard. The analysis was applied to distal radius and tibia HRpQCT scans from a subset of participants from the Calgary, Alberta, cohort of the Canadian Multicentre Osteoporosis Study (n ¼ 280, 18 to 90 years). Analysis of covariance compared Ct.Po and Ct.Th outcomes between 63 normal premenopausal (dual-energy X-ray absorptiometry femoral neck T-score > À1), 87 normal postmenopausal, 121 osteopenic postmenopausal, and 9 osteoporotic postmenopausal women. Linear regression analysis and Bland-Altman plots were used to assess the agreement between the HRpQCT and mCT measurements, resulting in r 2 values of 0.80 for Ct.Po and 0.98 for Ct.Th. At both sites, Ct.Po was higher in postmenopausal (all groups) than in premenopausal women (3.2% to 12.9%, p < .001). Ct.Th was not significantly different between normal premenopausal and postmenopausal women at either site; however, both osteopenic and osteoporotic women had thinner (À12.8% to À30.3%, p < .01), more porous (2.1% to 8.1%, p < .001) cortices than normal postmenopausal women. Our method offers promise as a valuable tool to measure Ct.Po and Ct.Th in vivo and investigate associations among cortical bone structure, age, and disease status. ß
Chronic kidney disease (CKD) patients may have high rates of bone loss and fractures, but microarchitectural and biochemical mechanisms of bone loss in CKD patients have not been fully described. In this longitudinal study of 53 patients with CKD Stages 2-5D, we used dual energy X-ray absorptiometry (DXA), high resolution peripheral quantitative computed tomography (HRpQCT) and biochemical markers of bone metabolism to elucidate effects of CKD on the skeleton. Median follow-up was 1.5 years (Range 0.9 to 4.3 years); bone changes were annualized and compared to baseline. By DXA, there were significant declines in areal bone mineral density (BMD) of the total hip and ultradistal radius: −1.3% (95% CI: −2.1 to −0.6) and −2.4% (95% CI: −4.0 to −0.9), respectively. By HRpQCT at the distal radius, there were significant declines in cortical area, density and thickness, and increases in porosity: −2.9% (95% CI −3.7 to −2.2), −1.3% (95% CI −1.6 to −0.6), −2.8% (95% CI −3.6 to −1.9), and +4.2% (95% CI 2.0 to 6.4) respectively. Radius trabecular area increased significantly: +0.4% (95% CI 0.2 to 0.6), without significant changes in trabecular density or microarchitecture. Elevated time-averaged levels of parathyroid hormone (PTH) and bone turnover markers predicted cortical deterioration. Higher levels of serum 25-hydroxyvitamin D predicted decreases in trabecular network heterogeneity. These data suggest that significant cortical loss occurs with CKD, which is mediated by hyperparathyroidism and elevated turnover. Future investigations are required to determine whether these cortical losses can be attenuated by treatments that reduce PTH levels and remodeling rates.
In this cross-sectional study, we aimed to predict age-related changes in bone microarchitecture and strength at the distal radius (DR) and distal tibia (DT) in 644 Canadian adults (n ¼ 442 women and 202 men) aged 20 to 99 years. We performed a standard morphologic analysis of the DR and DT with high-resolution peripheral quantitative computed tomography (pQCT) and used finite-element analysis (FEA) to estimate bone strength (failure load) and the load distribution. We also calculated a DR load-to-strength ratio as an estimate of forearm fracture risk. Total bone area, which was 33% larger in young men at both sites, changed similarly with age in women and men at the DT but increased 17% more in men than in women at the DR ( p < .001). Trabecular number and thickness (Tb.Th) were 7% to 20% higher in young men than in young women at both sites, and with the exception of Tb.Th at the DR, which declined more with age in men (À16%) than in women (À2%, p < .01), the age-related decline in these outcomes was similar in women and in men. In the cortex, porosity (Ct.Po) was 31% to 44% lower in young women than in young men but increased 92% to 176% more with age in women than in men ( p < .001). The DR cortex carried 14% more load in young women than in young men, and the percentage of load carried by the DR cortex did not change with age in women but declined by 17% in men ( p < .01). FEA-estimated bone strength was 34% to 47% greater in young men, but the predicted change with age was similar in both sexes. In contrast, the load-to-strength ratio increased 27% more in women than in men with age ( p < .01). These results highlight important site-and sex-specific differences in patterns of age-related bone loss. In particular, the trends for less periosteal expansion, more porous cortices, and a greater percentage of load carried by the DR cortex in women may underpin sex differences in forearm fracture risk. ß
Bone material properties are impaired in postmenopausal women with T2D as determined by reference point indentation. The results suggest a role for the accumulation of AGEs to account for inferior BMSi in T2D.
The use of early corticosteroid withdrawal (ECSW) protocols after kidney transplantation has become common, but the effects on fracture risk and bone quality are unclear. We enrolled 47 first-time adult transplant recipients managed with ECSW into a 1-year study to evaluate changes in bone mass, microarchitecture, biomechanical competence, and remodeling with dual energy x-ray absorptiometry (DXA), highresolution peripheral quantitative computed tomography (HRpQCT), parathyroid hormone (PTH) levels, and bone turnover markers obtained at baseline and 3, 6, and 12 months post-transplantation. Compared with baseline, 12-month areal bone mineral density by DXA did not change significantly at the spine and hip, but it declined significantly at the 1/3 and ultradistal radii (2.2% and 2.9%, respectively; both P,0.001). HRpQCT of the distal radius revealed declines in cortical area, density, and thickness (3.9%, 2.1%, and 3.1%, respectively; all P,0.001), trabecular density (4.4%; P,0.001), and stiffness and failure load (3.1% and 3.5%, respectively; both P,0.05). Findings were similar at the tibia. Increasing severity of hyperparathyroidism was associated with increased cortical losses. However, loss of trabecular bone and bone strength were most severe at the lowest and highest PTH levels. In summary, ECSW was associated with preservation of bone mineral density at the central skeleton; however, it was also associated with progressive declines in cortical and trabecular bone density at the peripheral skeleton. Cortical decreases related directly to PTH levels, whereas the relationship between PTH and trabecular bone decreases was bimodal. Studies are needed to determine whether pharmacologic agents that suppress PTH will prevent cortical and trabecular losses and post-transplant fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.