Diabetic hyperglycemia increases ischemic brain damage in experimental animals and humans. The mechanisms are unclear but may involve enhanced apoptosis in penumbral regions. Estrogen is an established neuroprotectant in experimental stroke. Our previous study demonstrated that female diabetic db/db mice suffered less damage following cerebral hypoxia-ischemia (H/I) than male db/db mice. Here we investigated the effects of diabetes and estrogen apoptotic gene expression following H/I. Female db/db and nondiabetic (+/?) mice were ovariectomized (OVX) and treated with estrogen or vehicle prior to H/I; brains were analyzed for damage and bcl-2 family gene expression. OVX increased ischemic damage in +/? mice; estrogen reduced tissue injury and enhanced antiapoptotic gene expression (bcl-2 and bfl-1). db/db mice demonstrated more damage, without increased bcl-2 mRNA; bfl-1 expression appeared at 48 hours of recovery associated with infarction. To our knowledge, this is the first description of bfl-1 in the brain with localization to microglia and macrophages. Early induction of bfl-1 expression in +/? mouse brain was associated with microglia; delayed bfl-1 expression in diabetic brain was in macrophages bordering the infarct. Furthermore, estrogen replacement stimulated early postischemic expression of bcl-2 and bfl-1 and reduced damage in normoglycemic animals but failed to protect the diabetic brain.
Diabetic hyperglycemia increases ischemic brain damage in experimental animals and humans. The mechanisms are unclear but may involve enhanced apoptosis in penumbral regions. Estrogen is an established neuroprotectant in experimental stroke. Our previous study demonstrated that female diabetic db/db mice suffered less damage following cerebral hypoxia-ischemia (H/I) than male db/db mice. Here we investigated the effects of diabetes and estrogen apoptotic gene expression following H/I. Female db/db and nondiabetic (+/?) mice were ovariectomized (OVX) and treated with estrogen or vehicle prior to H/I; brains were analyzed for damage and bcl-2 family gene expression. OVX increased ischemic damage in +/? mice; estrogen reduced tissue injury and enhanced antiapoptotic gene expression (bcl-2 and bfl-1). db/db mice demonstrated more damage, without increased bcl-2 mRNA; bfl-1 expression appeared at 48 hours of recovery associated with infarction. To our knowledge, this is the first description of bfl-1 in the brain with localization to microglia and macrophages. Early induction of bfl-1 expression in +/? mouse brain was associated with microglia; delayed bfl-1 expression in diabetic brain was in macrophages bordering the infarct. Furthermore, estrogen replacement stimulated early postischemic expression of bcl-2 and bfl-1 and reduced damage in normoglycemic animals but failed to protect the diabetic brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.