Piezo channels transduce mechanical stimuli into electrical and chemical signals to powerfully influence development, tissue homeostasis, and regeneration. Studies on Piezo1 have largely focused on transduction of “outside-in” mechanical forces, and its response to internal, cell-generated forces remains poorly understood. Here, using measurements of endogenous Piezo1 activity and traction forces in native cellular conditions, we show that cellular traction forces generate spatially-restricted Piezo1-mediated Ca 2+ flickers in the absence of externally-applied mechanical forces. Although Piezo1 channels diffuse readily in the plasma membrane and are widely distributed across the cell, their flicker activity is enriched near force-producing adhesions. The mechanical force that activates Piezo1 arises from Myosin II phosphorylation by Myosin Light Chain Kinase. We propose that Piezo1 Ca 2+ flickers allow spatial segregation of mechanotransduction events, and that mobility allows Piezo1 channels to explore a large number of mechanical microdomains and thus respond to a greater diversity of mechanical cues.
SUMMARY Lymphocytes cross vascular boundaries via either disrupted tight junctions (TJs) or caveolae to induce tissue inflammation. In the central nervous system (CNS), Th17 lymphocytes cross the blood-brain barrier (BBB) prior to Th1 cells, yet this differential crossing is poorly understood. We have used intravital two-photon imaging of the spinal cord in wild-type and caveolae-deficient mice with fluorescently labeled endothelial TJs, to determine how TJ remodeling and caveolae regulate CNS entry of lymphocytes during the experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis. We find that dynamic TJ remodeling occurs early in EAE but does not depend upon caveolar transport. Moreover, Th1 but not Th17 lymphocytes are significantly reduced in the inflamed CNS of mice lacking caveolae. Therefore, TJ remodeling facilitates Th17 migration across the BBB, whereas caveolae promote Th1 entry into the CNS. Moroever, therapies that target both TJ degradation and caveolar transcytosis may limit lymphocyte infiltration during inflammation.
The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca2+-liberating second messenger inositol trisphosphate (IP3) diffuses with a coefficient (~280 μm2 s−1) similar to that in water, corresponding to a range of action of ~25 μm. Consequently, IP3 is generally considered a ‘global’ cellular messenger. We re-examined this issue by measuring local IP3-evoked Ca2+ puffs to monitor IP3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficient (≤10 μm2 s−1) about 30 fold slower than previously reported. We propose that diffusion of IP3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP3 (<5 μm) is thus smaller than the size of typical mammalian cells, indicating that IP3 should better be considered as a local rather than global cellular messenger.
Summary Local Ca2+ transients such as puffs and sparks form the building blocks of cellular Ca2+ signaling in numerous cell types. They have traditionally been studied by line scan confocal microscopy, but advances in TIRF microscopy together with improved electron-multiplied CCD (EMCCD) camera snow enable rapid (>500 frames s−1) imaging of subcellular Ca2+ signals with high spatial resolution in two dimensions. This approach yields vastly more information (ca. 1GB per minute) than line scan imaging, rendering visual identification and analysis of local events imaged both laborious and subject to user bias. Here we describe a routine to rapidly automate identification and analysis of local Ca2+ events. This features an intuitive graphical user-interfaces and runs under Matlab and the open-source Python software. The underlying algorithm features spatial and temporal noise filtering to reliably detect even small events in the presence of noisy and fluctuating baselines; localizes sites of Ca2+ release with sub-pixel resolution; facilitates user review and editing of data; and outputs time-sequences of fluorescence ratio signals for identified event sites along with Excel-compatible tables listing amplitudes and kinetics of events.
Total internal reflection fluorescence (TIRF) microscopy is a powerful tool for visualizing near-membrane cellular structures and processes, including imaging of local Ca2+ transients with single-channel resolution. TIRF is most commonly implemented in epi-fluorescence mode, whereby laser excitation light is introduced at a spot near the periphery of the back focal plane of a high numerical aperture objective lens. However, this approach results in an irregular illumination field, owing to interference fringes and scattering and shadowing by cellular structures. We describe a simple system to circumvent these limitations, utilizing a pair of galvanometer-driven mirrors to rapidly spin the laser spot in a circle at the back focal plane of the objective lens, so that irregularities average out during each camera exposure to produce an effectively uniform field. Computer control of the mirrors enables precise scanning at 200 Hz (5ms camera exposure times) or faster, and the scan radius can be altered on a frame-by-frame basis to achieve near-simultaneous imaging in TIRF, widefield and ‘skimming plane’ imaging modes. We demonstrate the utility of the system for dynamic recording of local inositol trisphosphate-mediated Ca2+ signals and for imaging the redistribution of STIM and Orai proteins during store-operated Ca2+ entry. We further anticipate that it will be readily applicable for numerous other near-membrane studies, especially those involving fast dynamic processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.