Abstract:The detection of water stress in vineyards plays an integral role in the sustainability of high-quality grapes and prevention of devastating crop loses. Hyperspectral remote sensing technologies combined with machine learning provides a practical means for modelling vineyard water stress. In this study, we applied two ensemble learners, i.e., random forest (RF) and extreme gradient boosting (XGBoost), for discriminating stressed and non-stressed Shiraz vines using terrestrial hyperspectral imaging. Additionally, we evaluated the utility of a spectral subset of wavebands, derived using RF mean decrease accuracy (MDA) and XGBoost gain. Our results show that both ensemble learners can effectively analyse the hyperspectral data. When using all wavebands (p = 176), RF produced a test accuracy of 83.3% (KHAT (kappa analysis) = 0.67), and XGBoost a test accuracy of 80.0% (KHAT = 0.6). Using the subset of wavebands (p = 18) produced slight increases in accuracy ranging from 1.7% to 5.5% for both RF and XGBoost. We further investigated the effect of smoothing the spectral data using the Savitzky-Golay filter. The results indicated that the Savitzky-Golay filter reduced model accuracies (ranging from 0.7% to 3.3%). The results demonstrate the feasibility of terrestrial hyperspectral imagery and machine learning to create a semi-automated framework for vineyard water stress modelling.
Landform classification is crucial for a host of applications that include geomorphological, soil mapping, radiative and gravity-controlled processes. Due to the complexity and rapid developments in the field of landform delineation, this study provides a scoping review to identify trends in the field. The review is premised on the PRISMA standard and is aimed to respond to the research questions pertaining to the global distribution of landform studies, methods used, datasets, analysis units and validation techniques. The articles were screened based on relevance and subject matter of which a total of 59 articles were selected for a full review. The parameters relating to where studies were conducted, datasets, methods of analysis, units of analysis, scale and validation approaches were collated and summarized. The study found that studies were predominantly conducted in Europe, South and East Asia and North America. Not many studies were found that were conducted in South America and the African region. The review revealed that locally sourced, very high-resolution digital elevation model ( DEM) products were becoming more readily available and employed for landform classification research. Of the globally available DEM sources, the SRTM still remains the most commonly used dataset in the field. Most landform delineation studies are based on expert knowledge. While object-based analysis is gaining momentum recently, pixel-based analysis is common and is also growing. Whereas validation techniques appeared to be mainly based on expert knowledge, most studies did not report on validation techniques. These results suggest that a systematic review of landform delineation may be necessary. Other aspects that may require investigation include a comparison of different DEMs for landform delineation, exploring more object-based studies, probing the value of quantitative validation approaches and data-driven analysis methods.
Feature selection techniques are often employed for reducing data dimensionality, improving computational efficiency, and most importantly for selecting a subset of the most important features for model building. The present study explored the utility of a Filter-Wrapper (FW) approach for feature selection using terrestrial hyperspectral remote sensing imagery. The efficacy of the FW approach was evaluated in conjunction with the Random Forest (RF) and Extreme Gradient Boosting (XGBoost) classifiers, to discriminate between water-stressed and non-stressed Shiraz vines. The proposed FW approach yielded a test accuracy of 80.0% (KHAT = 0.6) for both RF and XGBoost, outperforming the more traditional Kruskal-Wallis (KW) filter by more than 20%. The FW approach was also less computationally expensive when compared with the more commonly used Sequential Floating Forward Selection (SFFS) wrapper. Additionally, we examined the effect of hyperparameter optimisation on classification accuracy and computational expense. The results showed that RF marginally outperformed XGBoost when using all wavebands (p = 176) and optimised hyperparameter values. RF yielded a test accuracy of 83.3% (KHAT = 0.67), whereas XGBoost yielded a test accuracy of 81.7% (KHAT = 0.63). Our results further show that optimising hyperparameter values yielded an overall increase in test accuracy, ranging from 0.8% to 5.0%, for both RF and XGBoost. Overall, the results highlight the effect of feature selection and optimisation on the performance of machine learning ensembles for modelling vineyard water stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.