This article investigates the application of vibro-acoustic modulation testing for diagnosing damage in concrete structures. The vibro-acoustic modulation technique employs two excitation frequencies on a structure. The interaction of these excitations in the measured response indicates damage through the presence of sidebands in the frequency spectra. Past studies using this technique have mostly focused on metals and composites (thin plates or laminates). Our research focuses on concrete, which is a highly heterogeneous material susceptible to a variety of chemical, physical, and mechanical damage processes. In particular, this article investigates diagnosing cracking in concrete from an expansive gel produced by an alkali–silica reaction in the presence of moisture. Past studies have been limited to damage detection using vibro-acoustic modulation testing, whereas this article extends the technique to damage localization. A cement slab with pockets of reactive aggregate is used to investigate the diagnosis technique. The effects of different testing parameters, such as locations, magnitudes, and frequencies of the two excitations, are analyzed and incorporated in the damage localization methodology. A Bayesian probabilistic methodology is developed to fuse the information from multiple test configurations in order to construct damage probability maps for the test specimen. The results of vibro-acoustic modulation–based damage localization are validated by petrographic study of cores taken from the slab.
Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to falsepositives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a userdefined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM.
This research is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in nuclear power plants that are subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification, and prognosis. The current work focuses on degradation caused by ASR (alkali-silica reaction). Controlled concrete specimens with reactive aggregate are prepared to develop accelerated ASR degradation. Different monitoring techniques -infrared thermography [1], digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy [2] (NIRAS), and vibro-acoustic modulation [3] (VAM) -are studied for ASR diagnosis of the specimens. Both DIC and mechanical measurements record the specimen deformation caused by ASR gel expansion. Thermography is used to compare the thermal response of pristine and damaged concrete specimens and generate a 2-D map of the damage (i.e., ASR gel and cracked area), thus facilitating localization and quantification of damage. NIRAS and VAM are two separate vibration-based techniques that detect nonlinear changes in dynamic properties caused by the damage. The diagnosis results from multiple techniques are then fused using a Bayesian network, which also helps to quantify the uncertainty in the diagnosis. Prognosis of ASR degradation is then performed based on the current state of degradation obtained from diagnosis, by using a coupled thermo-hydro-mechanical-chemical (THMC) model [4] for ASR degradation. This comprehensive approach of monitoring, data analytics, and uncertainty-quantified diagnosis and prognosis will facilitate the development of a quantitative, risk-informed framework that will support continuous assessment and risk management of structural health and performance. Acknowledgement:
This paper presents a probabilistic framework for discrepancy prediction in dynamical system models under untested input time histories, based on information gained from validation experiments. Two surrogate modeling-based methods, namely observation surrogate and bias surrogate, are developed to predict the bias of a dynamical system simulation model under untested input time history. In the first method, a surrogate model is built for the observed experimental output, and the model bias for the untested input is obtained by comparing the output of the observation surrogate with the output of the physics-based model. The second method constructs a surrogate model for the bias in terms of the inputs in the conducted experiments. The bias surrogate model is then used to correct the simulation model prediction at each time-step under a predictor–corrector scheme to predict the model bias under untested conditions. A neural network-based surrogate modeling technique is employed to implement the proposed methodology. The bias prediction result is reported in a probabilistic manner, in order to account for the uncertainty of the surrogate model prediction. An air cycle machine case study is used to demonstrate the effectiveness of the proposed bias prediction framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.