.
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
This protocols document describes the design considerations and software tools to design a microfluidic device, fabrication protocols for making master molds and the final polydimethylsiloxane (PDMS) device, and testing of the completed microfluidic device.
The physical nature of the tumor microenvironment significantly impacts tumor growth, invasion, and response to drugs. Most in vitro tumor models are designed to study the effects of extracellular matrix (ECM) stiffness on tumor cells, while not addressing the effects of ECM's specific topography. In this study, we bioengineered submucosal organoids, using primary smooth muscle cells embedded in collagen I hydrogel, which produce aligned and parallel fiber topography similar to those found in vivo. The fiber organization in the submucosal organoids induced an epithelial phenotype in spheroids of colorectal carcinoma cells (HCT-116), which were embedded within the organoids. Conversely, unorganized fibers drove a mesenchymal phenotype in the tumor cells. HCT-116 cells in organoids with aligned fibers showed no WNT signaling activation, and conversely, WNT signaling activation was observed in organoids with disrupted fibers. Consequently, HCT-116 cells in the aligned condition exhibited decreased cellular proliferation and reduced sensitivity to 5-fluorouracil chemotherapeutic treatment compared to cells in the unorganized construct. Collectively, the results establish a unique colorectal tumor organoid model to study the effects of stromal topography on cancer cell phenotype, proliferation, and ultimately, chemotherapeutic susceptibility. In the future, such organoids can utilize patient-derived cells for precision medicine applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.