Autogenic cycles of channelization, terminal deposit formation, channel backfilling and channel abandonment have been observed in the formation of fans and deltas. In subcritical flow, these terminal deposits are characterized as mouth bars that lead to flow bifurcation, backwater and eventual channel backfilling. Similar, although less well characterized, cycles also take place on supercritical subaerial and submarine fans. This study investigates the hydraulics and morphodynamics of autogenic incision and backfilling cycles associated with supercritical distributive channel flow in alluvial fans. The research questions of the study are: (i) how are supercritical autogenic cycles on alluvial fans different from the subcritical cycles; (ii) what are the hydraulic and sediment transport characteristics at the various stages of autogenic feedback cycles; and (iii) what role do the cycles play in the overall fan evolution? These questions are investigated in the laboratory, and emphasis is placed on measuring the hydraulic and topographic evolution of the systems during the cycles. The cycles arise quasi-periodically under constant water and sediment discharge. Periods of sheet-like flow are competent to move sediment (s à > s à cr ) but not competent enough to carry the full imposed load. The net result is preferential deposition near the inlet, resulting in fan steepening and an increase in flow competency with time. At a sediment supply to capacity ratio of Q s =Q c % 0Á75, the sheet-like flow is unstable to small erosional events near the inlet, resulting in the collapse of the distributed flow to a strong channelized state. During channelization, a graded (Q s =Q c % 1) supercritical (Fr > 1) channel develops and transports eroded and fed sediment up to and through the fan front -extending the fan, initiating a lobe shaped deposit and reducing the local slope. The slopes defined by a sheet-like flow with Q s =Q c % 0Á75 and channelized flow with Q s =Q c % 1 set the maximum and minimum slopes on the fan, respectively. Once formed, graded channels act as bypass conduits linking the inlet with the terminal deposit. On average, deposits are up to six channel depths in thickness and have volumes approximately five times that of the excavated channel. The main distinctive characteristics of the supercritical cycles relate to how the flow interacts with the terminal deposit. At the channel to deposit transition, the flow undergoes a weak hydraulic jump, resulting in rapid sedimentation, dechannelization and lateral expansion of the flow, and deposition of any remaining sediment on top of the channel fill and floodplain. This process often caps the channel as the deposit propagates up channel erasing memory of the excavated channel.
Submarine fans, like other distributive systems, are built by repeated avulsion cycles. However, relative to deltas and alluvial fans, much less is known about avulsions in subaqueous settings. In this study, we ran a set of subaqueous fan experiments to investigate the mechanics associated with autogenic avulsion cycles of self-formed channels and lobe deposits on steep slopes. The experiments used saline density currents with crushed plastic to emulate sustained turbidity currents and bed load transport. We collected detailed hydraulic and bathymetric measurements and made use of a 1-D laterally expanding density current model to better understand different aspects of the avulsion cycle. Our results reveal three major components of the avulsion cycles: (1) distributary channel incision, extension, and stagnation; (2) mouth bar aggradation and hydraulic jump initiation; and (3) hydraulic jump sedimentation and upstream retreat. Interestingly, in all but one experiment, the avulsion cycles led to fans that remained perched above the basin slope break. Experimental data and hydraulic theory were used to unravel actual mechanics associated with cycles. We found that channels stopped extending into the basin due to a decay in sediment transport capacity relative to sediment supply and that the reduction in capacity was primarily an outcome of expansion-driven velocity reduction; dilution played a secondary role. Once channel extension ceased, mouth bar deposits aggraded to a thickness approximately equal to the critical step height needed to create a choked flow condition. The choke then initiated a hydraulic jump on the upstream side of the bar. Once formed, the jump detained a majority of the incoming sediment and forced the channel-to-lobe transition upstream, filling the channel with steep backset bedding and capping the entire channel with a mounded lobate deposit. These intrinsic processes repeated through multiple avulsion cycles to build the fan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.