Photobases are compounds which become strong bases after electronic excitation. Recent experimental studies have highlighted the photobasicity of the 5-R quinoline compounds, demonstrating a strong substituent dependence to the # *. In this paper we describe our systematic study of how the photobasicity of four families of nitrogen-containing heterocyclic aromatics are tuned through substituents. We show that substituent position and identity both significantly impact the # *. We demonstrate that the substituent effects are additive and identify many disubstituted compounds with substantially greater photobasicity than the most photobasic 5-R quinoline compound identified previously. We show that the addition of a second fused benzene ring to quinoline, along with two electron-donating substituents, lowers the S0®SCT vertical excitation energy into the visible while still maintaining a # * > 14. Overall, the structure-function relationships developed in this study provide new insights to guide the development of new photocatalysts that employ photobasicity.
Photobases are compounds that become more basic when promoted to an excited electronic state. Previous experimental and computational studies have demonstrated that several quinoline and quinoline-derived compounds are strong photobases (pK a * > 14). Moreover, the strength of photobasicity was shown to depend strongly on the identity and position of the substituent group(s), with the strongest photobases having multiple electron-donating substituents on a fused benzene ring as opposed to the ring containing the photobasic nitrogen atom. These electron-donating substituents build up electron density on one side of the molecule that shifts onto the nitrogen-containing ring in the electronic transition. This shift in electron density produces an increase in negative charge on the ring nitrogen atom responsible for the photobasicity. In this paper, we expand on our previous investigation to study the effect of an additional ring nitrogen atom on photobasicity in aromatic heterocycles. In particular, we consider how the thermodynamic driving force for excited-state protonation can be tuned by changing the relative placement of the ring nitrogen atoms and varying the position and number of electron-donating substituents. In the set of 112 molecules screened, we identified 42 strong photobases with generally comparable pK a * but lower vertical excitation energies than the quinoline derivatives with only a single ring nitrogen atom. We additionally explored photobasicity in substituted azaindole and carboline derivatives, identifying 76 strongly photobasic compounds with pK a * as large as 22.6 out of the 155 compounds that we considered. Overall, this work provides new insights into the design principles necessary to develop next-generation photocatalysts that employ photobasicity.
Photobases are compounds which become strong bases after electronic excitation.Recent experimental studies have highlighted the photobasicity of the 5-R quinoline compounds, demonstrating a strong substituent dependence to the # * . In this paper we describe our systematic study of how the photobasicity of four families of nitrogen-containing heterocyclic aromatics are tuned through substituents. We show that substituent position and identity both significantly impact the # * . We demonstrate that the substituent effects are additive and identify many disubstituted compounds with substantially greater photobasicity than the most photobasic 5-R quinoline compound identified previously. We show that the addition of a second fused benzene ring to quinoline, along with two electron-donating substituents, lowers the S0®SCT vertical excitation energy into the visible while still maintaining a # * > 14.Overall, the structure-function relationships developed in this study provide new insights to guide the development of new photocatalysts that employ photobasicity.
<p>Photobases are compounds which become strong bases after electronic excitaton into a charge-transfer excited state. Recent experimental studies have highlighted the photobasicity of the 5-R quinoline compounds, demonstrating a strong substituent dependence to the pK<sub>a</sub><sup>*</sup>. Here we describe our systematic study of how the photobasicity of four families of nitrogen-containing heterocyclic aromatics are tuned through substituents. We show that substituent position and identity both significantly impact the pK<sub>a</sub><sup>*</sup>. We demonstrate that the substituent effects are additive and identify many disubstituted compounds with substantially greater photobasicity than the most photobasic 5-R quinoline compound identified previously. We show that the addition of a second fused benzene ring to quinoline, along with two electron-donating substituents, lowers the vertical excitation energy into the visible while still maintaining a pK<sub>a</sub><sup>*</sup> > 14. Overall, the structure-function relationships developed in this study provide new insights to guide the development of new photocatalysts that employ photobasicity. </p>
<p>Photobases are compounds which become strong bases after electronic excitaton into a charge-transfer excited state. Recent experimental studies have highlighted the photobasicity of the 5-R quinoline compounds, demonstrating a strong substituent dependence to the pK<sub>a</sub><sup>*</sup>. Here we describe our systematic study of how the photobasicity of four families of nitrogen-containing heterocyclic aromatics are tuned through substituents. We show that substituent position and identity both significantly impact the pK<sub>a</sub><sup>*</sup>. We demonstrate that the substituent effects are additive and identify many disubstituted compounds with substantially greater photobasicity than the most photobasic 5-R quinoline compound identified previously. We show that the addition of a second fused benzene ring to quinoline, along with two electron-donating substituents, lowers the vertical excitation energy into the visible while still maintaining a pK<sub>a</sub><sup>*</sup> > 14. Overall, the structure-function relationships developed in this study provide new insights to guide the development of new photocatalysts that employ photobasicity. </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.