Large volumes of new accommodation have formed within the Mississippi Delta plain since the mid-1950s in association with rapid conversion of coastal wetlands to open water. The three-dimensional aspects and processes responsible for accommodation formation were quantifi ed by comparing surface elevations, water depths, and vertical displacements of stratigraphic contacts that were correlated between short sediment cores. Integration of data from remotely sensed images, sediment cores, and water-depth surveys at 10 geologically diverse areas in the delta plain provided a basis for estimating the total volume of accommodation formed by interior-wetland subsidence and subsequent erosion. Results indicate that at most of the study areas subsidence was a greater contributor than erosion to the formation of accommodation associated with wetland loss. Tens of millions of cubic meters of accommodation formed rapidly at each of the large open-water bodies that were formerly continuous interior delta-plain marsh. Together the individual study areas account for more than 440 × 10 6 m 3 of new accommodation that formed as holes in the Mississippi River delta-plain fabric between 1956 and 2004. This large volume provides an estimate of the new sediment that would be needed just at the study areas to restore the delta-plain wetlands to their pre-1956 areal extent and elevations. Published 2010. This article is a US Government work and is in the public domain in the USA.
Coastal Mississippi is protected by a series of barrier islands ranging in length from 10-25 kilometers that are less than 2 kilometers wide. The majority of these islands comprise the Gulf Islands National Seashore (GUIS), an ecologically diverse shoreline that provides habitat for wildlife including migratory birds and endangered animals. The majority of GUIS is submerged, and aquatic environments include dynamic tidal inlets, ebb-tide deltas, and seagrass beds. The islands are in a state of decline, with land areas severely reduced during the past century by storms, sea-level rise, and human alteration. Morton (2008) estimates that since the mid-1800s up to 64 percent of island surface area has been lost. Heavy damage was inflicted in 2005 by Hurricane Katrina, which passed by as a Category 3 storm and battered the islands with winds of more than 160 kilometers per hour and a storm surge up to 9 meters. Since 2007, the U.S. Geological Survey (USGS), in collaboration with the National Park Service, has been mapping the seafloor and substrate around the islands as part of the USGS Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility project. The purpose of these investigations is to characterize the near-surface stratigraphy and identify the influence it may have on island evolution and fate. In 2009, this effort provided the basis for a collaborative effort with the U.S. Army Corps of Engineers (USACE) to expand the investigation outside of GUIS boundaries as part of the Mississippi Coastal Improvement Project (MsCIP). The MsCIP program consists of structural, nonstructural, and environmental project elements to restore portions of coastal Mississippi and GUIS affected by storm impact. The project includes the placement of sand along the islands, both on the present beaches and within the littoral zone, to mitigate shoreline erosion and breaching. This action requires the location and assessment of offshore sand or sediment deposits that can provide suitable material for shoreline renourishment. The geophysical and sample information collected by the USGS during geologic investigations provides this information. As part of the MsCIP program, in March 2010 the USGS mapped approximately 300 square kilometers of seafloor around GUIS. Interferometric swath bathymetry, sidescan sonar, and Chirp sub-bottom profiling were used to characterize seafloor elevations, texture, and the underlying stratigraphy. On the basis of this information, potential sediment resources were identified. The most promising offshore deposits for beach restoration include shoals, lowstand valley fill, tidal delta deposits, abandoned barrier deposits, and dredge spoil. Of these, lowstand valley fill deposits and dredge spoil are less desirable; lowstand deposits are buried under a 2-to 4-meter blanket of mud, and dredge spoil volume is small. A relict tidal delta and submerged shoals are the most desirable deposits; the tidal delta contains a large volume of material still exposed on the seafloor, and parts of submerged shoals h...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.