Abstract-We implement a digital neuron in silicon using delay-insensitive asynchronous circuits. Our design numerically solves the Izhikevich equations with a fixed-point number representation, resulting in a compact and energy-efficient neuron with a variety of dynamical characteristics. A digital implementation results in stable, reliable and highly programmable circuits, while an asynchronous design style leads to energy-efficient clockless neurons and their networks that mimic the event-driven nature of biological nervous systems. In 65 nm CMOS technology at 1 V operating voltage and a 16-bit word length, our neuron can update its state 11,600 times per millisecond while consuming 0.5 nJ per update. The design occupies 29,500 µm 2 and can be used to construct dense neuromorphic systems. Our neuron exhibits the full repertoire of spiking features seen in biological neurons, resulting in a range of computational properties that can be used in artificial systems running neural-inspired algorithms, in neural prosthetic devices, and in accelerated brain simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.