The structure of formate dehydrogenase from Candida boidinii (CbFDH) is of both academic and practical interests. First, this enzyme represents a unique model system in studies of the role of protein dynamics in catalysis, but so far these studies were limited by the availability of structural information. Second, CbFDH and its mutants are of use in various industrial applications (e.g., CO2 fixation or nicotinamide recycling systems), and the lack of structural information has been a limiting factor in its commercial development. Here, we report the crystallization and structural determination of both holo-CbFDH and apo-CbFDH. The free energy barrier for the catalyzed reaction is computed, and indicates that this structure indeed represents a catalytically competent form of the enzyme. Complementing kinetic examinations demonstrate that the recombinant CbFDH has a well-organized reactive state. Finally, a fortuitous observation has been made: The apo-enzyme crystal was obtained under co-crystallization conditions with a saturating concentration of both the cofactor (NAD+) and inhibitor (azide), which has a nM dissociation constant. It was found that the fraction of the apo-enzyme present in the solution is less than 1.7x10−7 (i.e. the solution is 99.9999% holo-enzyme). This is an extreme case where the crystal structure represents an insignificant fraction of enzyme in solution, and a mechanism rationalizing this phenomenon is presented.
Thermal motions of enzymes have been invoked to explain the temperature dependence of kinetic isotope effects (KIEs) in enzyme-catalyzed hydride transfers. Formate dehydrogenase (FDH) from Candida boidinii exhibits a temperature-independent KIE that becomes temperature-dependent upon mutation of hydrophobic residues in the active site. Ternary complexes of FDH that mimic the transition state structure allow investigation of how these mutations influence active-site dynamics. A combination of X-ray crystallography, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamic simulations characterize the structure and dynamics of the active site. FDH exhibits oscillatory frequency fluctuations on the picosecond timescale, and the amplitude of these fluctuations correlates with the temperature dependence of the KIE. Both the kinetic and dynamic phenomena can be reproduced computationally. These results provide experimental evidence for a connection between the temperature dependence of KIEs and motions of the active site in an enzyme-catalyzed reaction consistent with activated tunneling models of the hydride transfer reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.