The human immunodeficiency virus type 1 (HIV-1) potent transactivator Tat protein mediates pleiotropic effects on various cell functions. Posttranslational modification of Tat affects its activity during viral transcription. Tat binds to TAR and subsequently becomes acetylated on lysine residues by histone acetyltransferases. Novel protein-protein interaction domains on acetylated Tat are then established, which are necessary for both sustained transcriptional activation of the HIV-1 promoter and viral transcription elongation. In this study, we investigated the identity of proteins that preferentially bound acetylated Tat. Using a proteomic approach, we identified a number of proteins that preferentially bound AcTat, among which p32, a cofactor of splicing factor ASF/SF-2, was identified. We found that p32 was recruited to the HIV-1 genome, suggesting a mechanism by which acetylation of Tat may inhibit HIV-1 splicing needed for the production of full-length transcripts. Using Tat from different clades, harboring a different number of acetylation sites, as well as Tat mutated at lysine residues, we demonstrated that Tat acetylation affected splicing in vivo. Finally, using confocal microscopy, we found that p32 and Tat colocalize in vivo in HIV-1-infected cells.
Here, we show that the p50 subunit as well as the p50/ p65 of NF-B, and not other factors such as SP1, TFIIB, polymerase II, TFIIA, or p65, can be acetylated by CBP/ p300 HAT domain. Acetylation of p50 was completely dependent on the presence of both HAT domain and Tat proteins, implying that Tat influences the transcription machinery by aiding CBP/p300 to acquire new partners and increase its functional repertoire. Three lysines, Lys-431, Lys-440, and Lys-441 in p50 were all acetylated in vitro, and a sequence similarity among p50, p53, Tat, and activin receptor type I on these particular lysines was observed. All proteins have been shown to be acetylated by the CBP/p300 HAT domain. Acetylated p50 increases its DNA binding properties, as evident by streptavidin/biotin pull-down assays when using labeled NF-B oligonucleotides. Increased DNA binding on HIV-1 long terminal repeat coincided with increases in the rate of transcription. Therefore, we propose that acetylation of the DNA binding domain of NF-B aids in nuclear translocation and enhanced transcription and also suggest that the substrate specificity of CBP/p300 can be altered by small peptide molecules, such as HIV-encoded Tat.
Parasitic helminths induce chronic infections in their hosts although, with most human helminthiases, protective immunity gradually develops with age or exposure of the host. One exception is infection with the human hookworm, Necator americanus, where virtually no protection ensues over time. Such observations suggest these parasites have developed unique mechanisms to evade host immunity, leading us to investigate the role of the excretory/secretory (ES) products of adult N. americanus in manipulating host immune responses. Specifically, we found that a protein(s) from ES products of adult N. americanus bound selectively to mouse and human NK cells. Moreover, incubation of purified NK cells with N. americanus ES products stimulated the production of augmented (4- to 30-fold) levels of IFN-γ. This augmentation was dependent on the presence of both IL-2 and IL-12 and was endotoxin-independent. This is the first report of a pathogen protein that binds exclusively to NK cells and the first report of a nematode-derived product that induces abundant levels of cytokines from NK cells. Such an interaction could provide a means of cross-regulating deleterious Th2 immune responses in the host, thereby contributing to the long-term survival of N. americanus.
Profiling integral plasma membrane proteins is of particular importance for the identification of new biomarkers for diagnosis and for drug development. We report in this study the identification of surface markers by performing comparative proteomics of established human immunodeficiency virus-1 (HIV-1) latent cell models and parental cell lines. To this end we isolated integral membrane proteins using a biotin-directed affinity purification method. Isolated proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) after in gel digestion. Seventeen different proteins were found to vary on the surface of T-cells due to HIV-1 infection. Of these proteins, 47% were integral membrane proteins, and 18% were membrane-associated. Through the use of complementary techniques such as Western blotting and fluorescent staining, we confirmed the differential expression of some of the proteins identified by MALDI-TOF including Bruton's tyrosine kinase and X-linked inhibitor of apoptosis. Finally, using phosphatidylinositol 3-kinase inhibitors and flavopiridol to inhibit Bruton's tyrosine kinase localization at the membrane and X-linked inhibitor of apoptosis protein expression, respectively, we showed that HIV-1 latently infected cells are more sensitive to these drugs than uninfected cells. This suggests that HIV-1 latently infected cells may be targeted with drugs that alter several pathways that are essential for the establishment and maintenance of latency.Biological membranes surround and compartmentalize cells. They provide a physical boundary between the cell and its environment and play an important role in cellular homoeostasis and metabolic energy transduction. According to the SingerNicolson "fluid-mosaic model" (1), plasma membranes are organized into lipid bilayers containing proteins that can diffuse rapidly throughout the two-dimensional surface of the membrane. Membrane proteins typically make up around a third of the proteome of a cell and associate with the membrane in different ways. Integral membrane proteins are contained within the bilayer through one or more transmembrane regions. They can also be associated with lipid anchors such as fatty acids and can cover large regions of a membrane with protein surfaces. Alternatively, proteins can be associated with the membrane through non-covalent interactions with integral membrane proteins or other membrane-associated proteins. The fluidity differences and the organization of protein and lipids within the plasma membrane depend upon the cholesterol content in the bilayer (2). The current evidence supports a novel concept of specific microdomains existing in the plasma membrane in vivo in regions rich in cholesterol (2, 3). These specific microdomains, termed "lipid rafts," are composed of tightly packed sphingolipids, gangliosides, and cholesterol (4). Lipid rafts are generally small, ranging from 25 to 700 nm depending on the activation state of the cell (5). In ad...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.