Change in day length is an important cue for reproductive activation in seasonally breeding animals to ensure that the timing of greatest maternal investment (e.g. lactation in mammals) coincides with favourable environmental conditions (e.g. peak productivity). However, artificial light at night has the potential to interfere with the perception of such natural cues. Following a 5-year study on two populations of wild marsupial mammals exposed to different night-time levels of anthropogenic light, we show that light pollution in urban environments masks seasonal changes in ambient light cues, suppressing melatonin levels and delaying births in the tammar wallaby. These results highlight a previously unappreciated relationship linking artificial light at night with induced changes in mammalian reproductive physiology, and the potential for larger-scale impacts at the population level.
No one suspected that temperature-dependent sex determination (TSD), whereby the sex of embryos depends on the temperature at which they develop, might occur in viviparous (live-bearing) reptiles, because thermoregulation in the mother results in relatively stable, raised gestation temperatures. But here we show that developing embryos of the actively thermoregulating viviparous skink Eulamprus tympanum are subject to TSD, offering the mother the chance to select the sex of her offspring and a mechanism to help to balance sex ratios in wild populations.
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons.
Evolutionary theories of aging are linked to life-history theory in that age-specific schedules of reproduction and survival determine the trajectory of age-specific mutation/selection balances across the life span and thus the rate of senescence. This is predicted to manifest at the organismal level in the evolution of energy allocation strategies of investing in somatic maintenance and robust stress responses in less hazardous envirnments in exchange for energy spent on growth and reproduction. Here we report experiments from long-studied populations of western terrestrial garter snakes (Thamnophis elegans) that reside in low and high extrinsic mortality environments, with evolved long and short life spans, respectively. Laboratory common-environment colonies of these two ecotypes were tested for a suite of physiological traits after control and stressed gestations. In offspring derived from control and corticosteronetreated dams, we measured resting metabolism; mitochondrial oxygen consumption, ATP and free radical production rates; and erythrocyte DNA damage and repair ability. We evaluated whether these aging biomarkers mirrored the evolution of life span and whether they were sensitive to stress. Neonates from the long-lived ecotype (1) were smaller, (2) consumed equal amounts of oxygen when corrected for body mass, (3) had DNA that damaged more readily but repaired more efficiently, and (4) had more efficient mitochondria and more efficient cellular antioxidant defenses than short-lived snakes. Many ecotype differences were enhanced in offspring derived from stress-treated dams, which supports the conclusion that nongenetic maternal effects may further impact the cellular stress defenses of offspring. Our findings reveal that physiological evolution underpins reptilian life histories and sheds light on the connectedness between stress response and aging pathways in wild-dwelling organisms.
Abstract:The creation of supplementary habitats that effectively mimic the physical and thermal characteristics of natural tree hollows should be a key priority for landscape restoration and biodiversity offset programs. Here, we compare the thermal profiles of natural tree hollows with three types of artificial hollows designed for small marsupial gliders and tree-roosting insectivorous bats: (1) 'chainsaw hollows' carved directly into the trunks and branches of live trees, (2) 'log hollows', and (3) plywood nest boxes. Chainsaw hollows had thermal profiles that were similar to natural tree hollows: they were consistently warmer than ambient conditions at night, while remaining cooler than ambient during the day. In contrast, glider and bat boxes had the opposite pattern of heating and cooling, being slightly cooler than ambient at night and substantially hotter during the day. Glider log hollows had greater variation in internal temperatures compared to natural hollows and chainsaw hollows, but fluctuated less than glider boxes. Our results provide the first empirical evidence that artificial hollows carved directly into live trees can produce thermally stable supplementary habitats that could potentially buffer hollow-dependent fauna from weather extremes; whereas, poorly insulated plywood nest boxes produce lower-quality thermal environments. Together these findings provide positive impetus for stakeholders involved in conservation management and biodiversity offset programs to consider trialing chainsaw hollows in situations where target fauna require well-insulated supplementary habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.