The C1q/TNF superfamily of proteins engages in a pleiotropy of physiological functions associated with various diseases. C1QL proteins demonstrate important protective and regulatory roles in the endocrine, immune, cardiovascular, and nervous systems in both human and rodent studies. Studies in the central nervous system (CNS), adipose, and muscle tissue reveal several C1QL protein and receptor pathways altering multiple cellular responses, including cell fusion, morphology, and adhesion. This review examines C1QL proteins across these systems, summarizing functional and disease associations and highlighting cellular responses based on in vitro and in vivo data, receptor interaction partners, and C1QL-associated protein signaling pathways. We highlight the functions of C1QL proteins in organizing CNS synapses, regulating synapse homeostasis, maintaining excitatory synapses, and mediating signaling and trans-synaptic connections. Yet, while these associations are known, present studies provide insufficient insight into the underlying molecular mechanism of their pleiotropy, including specific protein interactions and functional pathways. Thus, we suggest several areas for more in-depth and interdisciplinary hypothesis testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.