Mastication is continually modified throughout the chewing sequence in response to the texture of the food. The aim of this work was to compare the effects of an increase in hardness of two model food types, presenting either elastic or plastic rheological properties, on mastication. Each model food type consisted of four products of different hardness. Sensory testing experiments conducted with one group of 14 subjects showed significant perceived differences between products in terms of their increasing hardness. Fifteen other volunteers were asked to chew three replicates of each elastic and plastic product during two sessions. EMGs of masseter and temporalis muscles were recorded simultaneously with jaw movement during chewing. Numerous variables were analyzed from these masticatory recordings. Multiple linear regression analyses were used to assess the respective effects of food hardness and rheological properties on variables characterizing either the whole masticatory sequence or different stages of the sequence. Muscle activities were significantly affected by an increase in hardness regardless of the food type, whereas the shape of the cycles depended on the rheological properties. The masticatory frequency was affected by hardness at the initial stage of the sequence but overall frequency adaptation was better explained by a change in rheological behavior, with plastic products being chewed at a slower frequency. A dual hypothesis was proposed, implicating first a cortical-brain stem preprogrammed mechanism to adapt the shape of the jaw movements to the rheological properties of the food, and second, a brain stem mechanism with mainly sensory feedback from the mouth to adapt muscle force to the food hardness.
Food oral processing is not only important for the ingestion and digestion of food, but also plays an important role in the perception of texture and flavor. This overall sensory perception is dynamic and occurs during all stages of oral processing. However, the relationships between oral operations and sensory perception are not yet fully understood. This article reviews recent progress and research findings on oral food processing, with a focus on the dynamic character of sensory perception of solid foods. The reviewed studies are discussed in terms of both physiology and food properties, and cover first bite, mastication, and swallowing. Little is known about the dynamics of texture and flavor perception during mastication and the importance on overall perception. Novel approaches use time intensity and temporal dominance techniques, and these will be valuable tools for future research on the dynamics of texture and flavor perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.