Introduction The ability to predict spontaneous preterm birth (sPTB) prior to labour onset is a challenge, and it is currently unclear which biomarker(s), may be potentially predictive of sPTB, and whether their predictive power has any utility. A systematic review was conducted to identify maternal blood biomarkers of sPTB. Methods This study was conducted according to PRISMA protocol for systematic reviews. Four databases (MEDLINE, EMBASE, CINAHL, Scopus) were searched up to September 2021 using search terms: “preterm labor”, “biomarker” and “blood OR serum OR plasma”. Studies assessing blood biomarkers prior to labour onset against the outcome sPTB were eligible for inclusion. Risk of bias was assessed based on the Newcastle Ottawa scale. Increased odds of sPTB associated with maternal blood biomarkers, as reported by odds ratios (OR), or predictive scores were synthesized. This review was not prospectively registered. Results Seventy-seven primary research articles met the inclusion criteria, reporting 278 unique markers significantly associated with and/or predictive of sPTB in at least one study. The most frequently investigated biomarkers were those measured during maternal serum screen tests for aneuploidy, or inflammatory cytokines, though no single biomarker was clearly predictive of sPTB based on the synthesized evidence. Immune and signaling pathways were enriched within the set of biomarkers and both at the level of protein and gene expression. Conclusion There is currently no known predictive biomarker for sPTB. Inflammatory and immune biomarkers show promise, but positive reporting bias limits the utility of results. The biomarkers identified may be more predictive in multi-marker models instead of as single predictors. Omics-style studies provide promising avenues for the identification of novel (and multiple) biomarkers. This will require larger studies with adequate power, with consideration of gestational age and the heterogeneity of sPTB to identify a set of biomarkers predictive of sPTB.
Prostaglandins are thought to be important mediators in the initiation of human labour, however the evidence supporting this is not entirely clear. Determining how, and which, prostaglandins change during pregnancy and labour may provide insight into mechanisms governing labour initiation and the potential to predict timing of labour onset. The current study systematically searched the existing scientific literature to determine how biofluid levels of prostaglandins change throughout pregnancy before and during labour, and whether prostaglandins and/or their metabolites may be useful for prediction of labour. The databases EMBASE and MEDLINE were searched for English-language articles on prostaglandins measured in plasma, serum, amniotic fluid, or urine during pregnancy and/or spontaneous labour. Studies were assessed for quality and risk of bias and a qualitative summary of included studies was generated. Our review identified 83 studies published between 1968–2021 that met the inclusion criteria. As measured in amniotic fluid, levels of PGE2, along with PGF2α and its metabolite 13,14-dihydro-15-keto-PGF2α were reported higher in labour compared to non-labour. In blood, only 13,14-dihydro-15-keto-PGF2α was reported higher in labour. Additionally, PGF2α, PGF1α, and PGE2 were reported to increase in amniotic fluid as pregnancy progressed, though this pattern was not consistent in plasma. Overall, the evidence supporting changes in prostaglandin levels in these biofluids remains unclear. An important limitation is the lack of data on the complexity of the prostaglandin pathway outside of the PGE and PGF families. Future studies using new methodologies capable of co-assessing multiple prostaglandins and metabolites, in large, well-defined populations, will help provide more insight as to the identification of exactly which prostaglandins and/or metabolites consistently change with labour. Revisiting and revising our understanding of the prostaglandins may provide better targets for clinical monitoring of pregnancies. This study was supported by the Canadian Institutes of Health Research.
Background The All Our Families (AOF) cohort study is a longitudinal population-based study which collected biological samples from 1948 pregnant women between May 2008 and December 2010. As the quality of samples can decline over time, the objective of the current study was to assess the association between storage time and RNA (ribonucleic acid) yield and purity, and confirm the quality of these samples after 7–10 years in long-term storage. Methods Maternal whole blood samples were previously collected by trained phlebotomists and stored in four separate PAXgene Blood RNA Tubes (PreAnalytiX) between 2008 and 2011. RNA was isolated in 2011 and 2018 using PAXgene Blood RNA Kits (PreAnalytiX) as per the manufacturer’s instruction. RNA purity (260/280), as well as RNA yield, were measured using a Nanodrop. The RNA integrity number (RIN) was also assessed from 5–25 and 111–130 months of storage using RNA 6000 Nano Kit and Agilent 2100 BioAnalyzer. Descriptive statistics, paired t-test, and response feature analysis using linear regression were used to assess the association between various predictor variables and quality of the RNA isolated. Results Overall, RNA purity and yield of the samples did not decline over time. RNA purity of samples isolated in 2011 (2.08, 95% CI: 2.08–2.09) were statistically lower (p<0.000) than samples isolated in 2018 (2.101, 95% CI: 2.097, 2.104), and there was no statistical difference between the 2011 (13.08 μg /tube, 95% CI: 12.27–13.89) and 2018 (12.64 μg /tube, 95% CI: 11.83–13.46) RNA yield (p = 0.2964). For every month of storage, the change in RNA purity is -0.01(260/280), and the change in RNA yield between 2011 and 2018 is -0.90 μ g / tube. The mean RIN was 8.49 (95% CI:8.44–8.54), and it ranged from 7.2 to 9.5. The rate of change in expected RIN per month of storage is 0.003 (95% CI 0.002–0.004), so while statistically significant, these results are not relevant. Conclusions RNA quality does not decrease over time, and the methods used to collect and store samples, within a population-based study are robust to inherent operational factors which may degrade sample quality over time.
Background Emerging evidence suggests that SARS-CoV-2 infection during pregnancy can result in placental damage and poor placental outcomes. However, the mechanisms by which SARS-CoV-2 infection leads to placental damage are not well understood. With a rapid expansion of literature on this topic, it is critical to assess the quality and synthesize the current state of literature. The objective of this scoping review is to highlight underlying mechanisms of SARS-CoV-2 mediated placental pathology in pregnant individuals and identify literature gaps regarding molecular and cellular mechanisms of poor placental outcomes. Methods The review was conducted and reported following the recommendations of the PRISMA extension for Scoping Reviews. The study protocol was registered with Open Science Framework (https://osf.io/p563s/). Five databases (MEDLINE, EMBASE, Scopus, CINAHL, PubMed) were searched for studies published between September 2019 until April 2022. Studies assessing placental outcomes with respect to SARS-CoV-2 infection in pregnancy were eligible for inclusion. Outcomes of interest included histopathology, and molecular or cellular analysis. All records were uploaded into Covidence and extracted using the Joanna Briggs Institute method. Studies were assessed for risk of bias using the Newcastle Ottawa scale and a narrative synthesis of results was generated. Results Twenty-seven studies reporting on molecular and/or cellular mechanisms of SARS-CoV-2 mediated placental outcomes were included in this review. SARS-CoV-2 infection was associated with perturbations in the ACE2 pathway, inflammatory mediators and immune cell populations and mitochondrial function in placentas. Conclusions Our findings suggest that changes in the ACE2 pathway, mitochondrial dysfunction, and/or inflammatory processes may lead to placental damage observed in SARS-CoV-2 infection during pregnancy. More research is needed to understand the role of these pathways further, in addition to data collection related to trimester, severity, and strain.
Introduction: Endocannabinoid signaling (ECS), mediated primarily by cannabinoid receptors (CNR) 1 and 2, is implicated in embryo implantation, decidualization, and placentation, but less is known about its role in late pregnancy or labour. Reports of elevated serum endocannabinoid concentrations during labour suggest that ECS may modulate uterine function leading up to and during parturition. Effects on uterine function likely vary depending on: the type of cannabinoid present, the intrauterine tissue, and CNR1/2 expression. Study of ECS gene expression in late pregnancy is therefore important to determine the contribution of this pathway to the normal and pathologic physiology of labour, for instance in preterm labour. Examining ECS gene expression in pregnancy may also contribute insight into the effects of exogenous cannabinoid consumption (reported in ~5% of pregnancies) on the late-pregnant uterus. To understand when and where cannabinoid signaling may impact uterine functions, we conducted an observational study on pregnant human and mouse intrauterine tissues. Methods: Human amnion, chorion, decidua, placenta, and upper/lower myometrium (n=6 participants) were biopsied at cesarean delivery (term, non-labour) to determine CNR expression by qPCR. Additional decidua (n=80) and upper/lower myometrium (n=82) samples were similarly obtained with and without labour, at term and preterm, for CNR expression analysis by qPCR. Mouse uteri for CNR expression analysis by qPCR were obtained from timed-mated C57BL6 mice at days 15-20 of pregnancy, in active labour, or post-partum. Human and mouse expression data were analyzed by Student’s t-test, one-way ANOVA (Bonferroni post-hoc), and Pearson’s correlation, as appropriate. Results: Term non-labour chorion, placenta, myometrium and decidua express CNRs, with 2-fold higher expression of CNR1 versus CNR2. In myometrium and decidua, neither CNR1 or CNR2 expression differed with labour status. CNR1 expression correlated positively with gestational age in decidua (r=0.346, p=0.0266) and lower segment myometrium (r=0.3667, p=0.0270) with labour. In mouse uteri, Cnr1 and Cnr2 expression significantly increased post-partum compared to mid/late pregnancy (vs day 19, p<0.0001 Cnr1; vs days 15-18, p<0.05 Cnr2). Conclusion: ECS may occur in the human decidua and myometrium throughout pregnancy and labour as CNR1 and CNR2 expression is maintained throughout. In our mouse model, higher Cnr1 and Cnr2 expression post-partum suggests that ECS may play a role in uterine resolution following delivery. Additional RNAseq analysis of the mouse tissues studied is underway to address whether expression of genes involved in production, transport or metabolism of cannabinoids are altered in late pregnancy or with the initiation of parturition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.