A novel rapid methodology for the determination of chemical oxygen demand (COD) based on photoelectrochemical oxidative degradation principle (PECOD) was proposed and experimentally validated. With this new method, the extent of degradation of dissolved organic matter in a water sample is measured simply by directly quantifying the extent of electron transfer at a TiO 2 nanoporous film electrode during an exhaustive photoelectrocatalytic degradation of organic matter in a thin layer photoelectrochemical cell. The PECOD method demonstrated in this work is a direct and absolute method. It does not require the use of standard for calibration. The method, in principle, measures the theoretical COD value due to the extraordinary high oxidation efficiency and accuracy of charge measurement. This new approach overcomes many of the current problems associated with existing oxygen demand techniques (e.g., the matrix effect, one of the serious practical problems that most rapid COD methods suffered because of the insufficient oxidation efficiency). The PECOD method overcomes the matrix effect by employing a highly effective photoelectrochemical system that is capable of fully oxidizing a wide spectrum of organics in the water sample. The method was successfully applied to determine the COD of a range of synthetic and real samples. Excellent agreement with a standard dichromate method was achieved. The practical detection limit of 0.2 mg L -1 COD with the linear range of 0-200 mg L -1 was also achieved. The PECOD method is a method that is environmentally friendly, robust, rapid, and easily automated. It requires only 1-5 min to complete an assay and consumes very limited reagent (electrolyte only).
Ferricyanide-mediated (FM) microbial reactions were used for the rapid determination of the biochemical oxygen demand (BOD) of a range of synthetic and real wastewater samples. Four single-species microbial seeds and a synthetically prepared microbial consortium were compared. In all cases, the microbial consortium exhibited a greater extent and rate of biodegradation compared to the individual microbial seeds. Markedly improved correlation to the standard BOD5 method was also noted for the microbial consortium (compared to the single-species seeds). A linear dynamic range up to 200 mg BOD5 L(-1) was observed, which is considerably greater than the linear range of the standard BOD5 assay and most other rapid BOD assays reported. In addition, biodegradation efficiencies comparable to the 5-day BOD5 assay (and much greater than other rapid BOD assays) were observed in 3 h. A highly significant correlation (R = 0.935, p = 0.000, n = 30) between the FM-BOD method and the standard BOD5 method was found for a wide diversity of real wastewater samples. The results indicate that the FM-BOD assay is a promising, rapid, alternative to the standard 5-day BOD5 assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.