Fusion-associated small transmembrane (FAST) proteins are viral nonstructural proteins that mediate cell-cell fusion to form multinucleated syncytia. We previously reported that human species B rotavirus NSP1-1 is a FAST protein that induces syncytia in primate epithelial cells but not rodent fibroblasts. We hypothesized that the NSP1-1 proteins of other rotavirus species could also mediate cell-cell fusion and that fusion activity might be limited to cell types derived from homologous hosts. To test this hypothesis, we predicted the structure and domain organization of NSP1-1 proteins of species B rotavirus from a human, goat, and pig, species G rotavirus from a pigeon and turkey, and species I rotavirus from a dog and cat. We cloned these sequences into plasmids and transiently expressed the NSP1-1 proteins in avian, canine, hamster, human, porcine, and simian cells. Regardless of host origin of the virus, each NSP1-1 protein induced syncytia in primate cells, while few induced syncytia in other cell types. To identify the domains that determined cell-specific fusion activity for human species B rotavirus NSP1-1, we engineered chimeric proteins containing domain exchanges with the p10 FAST protein from Nelson Bay orthoreovirus. Using the chimeric proteins, we found that the N-terminal and transmembrane domains determined the cell type specificity of fusion activity. Although the species and cell type criteria for fusion activity remain unclear, these findings suggest that rotavirus species B, G, and I NSP1-1 are functional FAST proteins whose N termini play a role in specifying the cells in which they mediate syncytia formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.