We review current findings associating socioeconomic status (SES), development of neurocognitive functions, and neurobiological pathways. A sizeable interdisciplinary literature was organized through a bifurcated developmental trajectory (BiDeT) framework, an account of the external and internal variables associated with low SES that may lead to difficulties with attention and learning, along with buffers that may protect against negative outcomes. A consistent neurocognitive finding is that low-SES children attend to information nonselectively, and engage in late filtering out of task-irrelevant information. Attentional preferences influence the development of latent inhibition (LI), an aspect of learning that involves reassigning meaningful associations to previously learned but irrelevant stimuli. LI reflects learning processes clarifying the relationship between neurobiological mechanisms related to attention and socioeconomic disadvantage during child development. Notably, changes in both selective attention and typical LI development may occur via the mesocorticolimbic dopamine (MsCL-DA) system. Chaotic environments, social isolation, and deprivation associated with low SES trigger stress responses implicating imbalances in the MsCL-DA and consolidating anxiety traits. BiDeT describes plausible interactions between socioemotional traits and low-SES environments that modify selective attention and LI, predisposing individuals to vulnerability in cognitive development and academic achievement. However, positive role models, parental style, and self-regulation training are proposed as potential promoters of resilience.
Children (aged 9-12) training in an El Sistema-inspired program (OrKidstra) and a matched comparison group participated in an auditory Go/No-Go task while event-related potentials (ERPs) were recorded. Entire-sweep waveform patterns correlated with known ERP peaks associated with executive and other cognitive functions and indicated that the spread of neural activity in the initial 250 ms of executive attention processing (pre-P300) showed higher level of topographical overlap in OrKidstra children. In these children, late potentials (post-P300) concurrent with response control were more widely distributed and temporally coordinated. Intensive ensemble music training, we suggest, may be associated with neuroplastic changes facilitating integration of neural information.
Much evidence shows that music training influences the development of functional brain organization and cerebral asymmetry in an auditory-motor integrative neural system also associated with language and speech. Such overlap suggests that music training could be used for interventions in disadvantaged populations. Accordingly, we investigated neurofunctional changes associated with the influence of socially based classical ensemble music (CEM) training on executive auditory functions of children from low socioeconomic status (LSES), as compared to untrained counterparts. We conducted a novel ROI-focused reanalysis of stimulus-locked event-related electroencephalographic (EEG) band power data previously recorded from fifteen LSES children (9–10 years), with and without CEM, while performing a series of auditory Go/No-Go trials (involving 1100 Hz or 2000 Hz tones). An analysis of collapsed Alpha2, Beta1, Beta2, Delta, and Theta EEG bands showed significant differences in increased and decreased left asymmetry between the CEM and the Comparison group in key frontal and central electrodes typically associated with learning music. Overall, in Go trials, the CEM group responded more quickly and accurately. Linear regression analyses revealed both positive and negative correlations between left hemispheric asymmetry and behavioral measures of PPVT score, auditory sensitivity, Go accuracy, and reaction times. The pattern of results suggests that tone frequency and EEG asymmetries may be attributable to a shift to left lateralization as a byproduct of CEM. Our findings suggest that left hemispheric laterality associated with ensemble music training may improve the efficiency of productive language processing and, accordingly, may be considered as a supportive intervention for LSES children and youth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.