Most spinal cord injury (SCI) research programs focus only on the injured spinal cord with the goal of restoring locomotor function by overcoming mechanisms of cell death or axon regeneration failure. Given the importance of the spinal cord as a locomotor control center and the public perception that paralysis is the defining feature of SCI, this "spinal-centric" focus is logical. Unfortunately, such a focus likely will not yield new discoveries that reverse other devastating consequences of SCI including cardiovascular and metabolic disease, bladder/bowel dysfunction and infection. The current review considers how SCI changes the physiological interplay between the spinal cord, the gut and the immune system. A suspected culprit in causing many of the pathological manifestations of impaired spinal cord-gut-immune axis homeostasis is the gut microbiota. After SCI, the composition of the gut microbiota changes, creating a chronic state of gut "dysbiosis". To date, much of what we know about gut dysbiosis was learned from 16S-based taxonomic profiling studies that reveal changes in the composition and abundance of various bacteria. However, this approach has limitations and creates taxonomic "blindspots". Notably, only bacteria can be analyzed. Thus, in this review we also discuss how the application of emerging sequencing technologies can improve our understanding of how the broader ecosystem in the gut is affected by SCI. Specifically, metagenomics will provide researchers with a more comprehensive look at post-injury changes in the gut virome (and mycome). Metagenomics also allows changes in microbe population dynamics to be linked to specific microbial functions that can affect the development and progression of metabolic disease, immune dysfunction and affective disorders after SCI. As these new tools become more readily available and used across the research community, the development of an "ecogenomic" toolbox will facilitate an Eco-Systems Biology approach to study the complex interplay along the spinal cord-gut-immune axis after SCI.
Graphene-based materials are used in many fields but have found only limited applications in biomedicine, including bone tissue engineering. Here, we demonstrate that novel hybrid materials consisting of gelatin-derived graphene and silicate nanosheets of Laponite (GL) are biocompatible and promote osteogenic differentiation of mesenchymal stem cells (MSCs). Homogeneous cell attachment, long-term proliferation, and osteogenic differentiation of MSCs on a GL-scaffold were confirmed using optical microscopy and scanning electron microscopy. GL-powders made by pulverizing the GL-scaffold were shown to promote bone morphogenetic protein (BMP9)-induced osteogenic differentiation. GL-powders increased the alkaline phosphatase (ALP) activity in immortalized mouse embryonic fibroblasts but decreased the ALP activity in more-differentiated immortalized mouse adipose-derived cells. Note, however, that GL-powders promoted BMP9-induced calcium mineral deposits in both MSC lines, as assessed using qualitative and quantitative alizarin red assays. Furthermore, the expression of chondro-osteogenic regulator markers such as Runx2, Sox9, osteopontin, and osteocalcin was upregulated by the GL-powder, independent of BMP9 stimulation; although the powder synergistically upregulated the BMP9-induced Osterix expression, the adipogenic marker PPARγ was unaffected. Furthermore, in vivo stem cell implantation experiments demonstrated that GL-powder could significantly enhance the BMP9-induced ectopic bone formation from MSCs. Collectively, our results strongly suggest that the GL hybrid materials promote BMP9-induced osteogenic differentiation of MSCs and hold promise for the development of bone tissue engineering platforms.
Emerging data indicate that gut dysbiosis contributes to many human diseases, including several comorbidities that develop after traumatic spinal cord injury (SCI). To date, all analyses of SCI-induced gut dysbiosis have used 16S rRNA amplicon sequencing. This technique has several limitations, including being susceptible to taxonomic “blind spots,” primer bias, and an inability to profile microbiota functions or identify viruses. Here, SCI-induced gut dysbiosis was assessed by applying genome- and gene-resolved metagenomic analysis of murine stool samples collected 21 days after an experimental SCI at the 4th thoracic spine (T4) or 10th thoracic spine (T10) spinal level. These distinct injuries partially (T10) or completely (T4) abolish sympathetic tone in the gut. Among bacteria, 105 medium- to high-quality metagenome-assembled genomes (MAGs) were recovered, with most (n = 96) representing new bacterial species. Read mapping revealed that after SCI, the relative abundance of beneficial commensals (Lactobacillus johnsonii and CAG-1031 spp.) decreased, while potentially pathogenic bacteria (Weissella cibaria, Lactococcus lactis_A, Bacteroides thetaiotaomicron) increased. Functionally, microbial genes encoding proteins for tryptophan, vitamin B6, and folate biosynthesis, essential pathways for central nervous system function, were reduced after SCI. Among viruses, 1,028 mostly novel viral populations were recovered, expanding known murine gut viral species sequence space ∼3-fold compared to that of public databases. Phages of beneficial commensal hosts (CAG-1031, Lactobacillus, and Turicibacter) decreased, while phages of pathogenic hosts (Weissella, Lactococcus, and class Clostridia) increased after SCI. Although the microbiomes and viromes were changed in all SCI mice, some of these changes varied as a function of spinal injury level, implicating loss of sympathetic tone as a mechanism underlying gut dysbiosis. IMPORTANCE To our knowledge, this is the first article to apply metagenomics to characterize changes in gut microbial population dynamics caused by a clinically relevant model of central nervous system (CNS) trauma. It also utilizes the most current approaches in genome-resolved metagenomics and viromics to maximize the biological inferences that can be made from these data. Overall, this article highlights the importance of autonomic nervous system regulation of a distal organ (gut) and its microbiome inhabitants after traumatic spinal cord injury (SCI). By providing information on taxonomy, function, and viruses, metagenomic data may better predict how SCI-induced gut dysbiosis influences systemic and neurological outcomes after SCI.
Purpose: To assess the effectiveness of trans-arterial vascular interventions in treatment of civilian gunshot wounds (GSW). Materials and Methods: A retrospective review was performed at a level-1 trauma center to include 46 consecutive adults admitted due to GSW related hemorrhage and treated with endovascular interventions from 7/2018 to 7/2022. Patient demographics and procedural metrics were retrieved. Primary outcomes of interest include technical success and in-hospital mortality. Factors of mortality were assessed using a logistic regression model. Results: Twenty-one patients were brought to the endovascular suite directly (endovascular group) from the trauma bay and 25 patients after treatment in the operating room (OR group). The OR group had higher hemodynamic instability (48.0% vs 19.0%, p=0.040), lower hemoglobin (12.9 vs 10.1, p=0.001) and platelet counts (235.2 vs 155.1, p=0.003), and worse APACHE score (4.1 vs 10.2, p<0.0001) at the time of initial presentation. Technical success was achieved in all 40 cases in which targeted embolization was attempted (100%). Empiric embolization was performed in 6/46 (13.0%) patients based on computed tomographic angiogram (CTA) and operative findings. Stent-grafts were placed in 3 patients for subclavian artery injuries. Availability of pre-intervention CTA was associated with shorter fluoroscopy time (19.8±12.1 vs 30.7±18.6 minutes, p=0.030). A total of 41 patients were discharged in stable condition (89.1%). Hollow organ injury was associated with mortality (p=0.039). Conclusion: Endovascular embolization and stenting were effective in managing hemorrhage due to GSW in a carefully selected population. Hollow organ injury was a statistically significant predictor of mortality. Pre-intervention CTA enabled targeted, shorter and equally effective procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.